physical unclonable functions

FPGA Implementation of a Cryptographically-Secure PUF Based on Learning Parity with Noise

Published in MDPI Cryptography

Joint Work with Chenglu, Charles, Ling, Ha, Srini, and Marten.

Abstract: Herder et al. (IEEE Transactions on Dependable and Secure Computing, 2017) designed a new computational fuzzy extractor and physical unclonable function (PUF) challenge-response protocol based on the Learning Parity with Noise (LPN) problem. The protocol requires no irreversible state updates on the PUFs for security, like burning irreversible fuses, and can correct for significant measurement noise when compared to PUFs using a conventional (information theoretical secure) fuzzy extractor. However, Herder et al. did not implement their protocol. In this paper, we give the first implementation of a challenge response protocol based on computational fuzzy extractors. Our main insight is that “confidence information” does not need to be kept private, if the noise vector is independent of the confidence information, e.g., the bits generated by ring oscillator pairs which are physically placed close to each other. This leads to a construction which is a simplified version of the design of Herder et al. (also building on a ring oscillator PUF). Our simplifications allow for a dramatic reduction in area by making a mild security assumption on ring oscillator physical obfuscated key output bits.

Robust Keys from Physical Unclonable Functions

Merrielle Spain, Benjamin Fuller, Kyle Ingols, and Robert Cunningham. Robust Keys from Physical Unclonable Functions. IEEE Symposium on Hardware Oriented Security and Trust, 2014.


Weak physical unclonable functions (PUFs) can instantiate read-proof hardware tokens (Tuyls et al. 2006, CHES) where benign variation, such as changing temperature, yields a consistent key, but invasive attempts to learn the key destroy it. Previous approaches evaluate security by measuring how much an invasive attack changes the derived key (Pappu et al. 2002, Science). If some attack insufficiently changes the derived key, an expert must redesign the hardware. An unexplored alternative uses software to enhance token response to known physical attacks. Our approach draws on machine learning. We propose a variant of linear discriminant analysis (LDA), called PUF LDA, which reduces noise levels in PUF instances while enhancing changes from known attacks. We compare PUF LDA with standard techniques using an optical coating PUF and the following feature types: raw pixels, fast Fourier transform, short-time Fourier transform, and wavelets. We measure the true positive rate for valid detection at a 0% false positive rate (no mistakes on samples taken after an attack). PUF LDA improves the true positive rate from 50% on average (with a large variance across PUFs) to near 100%. While a well-designed physical process is irreplaceable, PUF LDA enables system designers to improve the PUF reliability-security tradeoff by incorporating attacks without redesigning the hardware token.