
CSE 5854: Class 15

Benjamin Fuller

March 20, 2018

1 A semi-honest multi-party computation pro-
tocol

Before break we described a semi-honest protocol to compute any function in
polynomial time. The protocol was split into three phases (consider a compu-
tation represented as a circuit). The three phases are:

1. Sharing each input to the computation xi to each party. Call these shares
xi,1, ..., xi,n.

2. Have parties compute each gate on the shared input values to the gate.
We perform these computations doing the following:

(a) NOT gate: On input x1, ..., xn the first party (arbitrarily selected)
inverts their share.

(b) XOR gate: On input xi, yi each party locally adds the shares to
produce a share of the output value.

(c) AND gate: This protocol was more complicated and relied on a party
generating a new random value and then running a 1-out-of-4 obliv-
ious transfer.

3. Reconstruct the final output by transmitting the shares, yi, of the output
to each party.

This forces the core of the semi-honest GMW protocol. In this class we will
talk about two ways to make this protocol withstand malicious behavior.

1. A protocol that is secure when at most t < n parties are malicious. This
protocol makes no attempt to provide fairness.

2. A protocol that is secure and fair when at most t < n/2 parties are
malicious.

Note It is impossible to provide fairness if at least half of the parties are ma-
licious. Roughly, you can think of the impossibility as follows: suppose such a
protocol exists. Two players P1 and P2 emulate a two party computation by
running the n party computation with each player controlling n/2 parties. If
the n party protocol is fair then we know that neither P1 or P2 can abort and
break fairness. However, we know that such a protocol cannot exist thus the n
party protocol must not be secure.

1



The idea behind fairness is relatively simple in the semi-honest model. We
ask each party to secret share their input using an n/2-out-of-n secret sharing
as the first message in the protocol. If honest parties detect that a party has
stopped responding they can get together to construct the input of that party.
This discussion assumes a synchronous network where the adversary is not al-
lowed to drop messages. If the adversary controls the network or the network is
asynchronous it is not possible to distinguish between a party not participating
(in which case their input should be opened) and the adversary blocking a mes-
sage (in which case their input should be kept private). Thus, if an adversary
can drop messages we do not attempt to provide fairness.

Both of these protocols can be transformed from semi-honest to malicious
behavior.

1.1 The rough idea

In the two party setting we saw a general paradigm for converting semi-honest
protocols to malicious protocols. Let H1 and H2 be the code of the honest party.
It worked as follows:

1. Each party commits to their inputs.

2. Party P1 and P2 conduct coin flipping protocols. Specifically we consider
a single party P1. At the end of the protocol P1 has committed to r1 and
P2 has sent r2. The random tape to be used by P1 is r1⊕r2. Importantly,
P1 never opens its commitment. Instead, it will prove that its messages
are consistent with r1 ⊕ r2.

3. For each message m to be sent by P1 party sends the message and proves
(using ZKPoK) that m ← H1(σ; r1 ⊕ r2, x1) is the message the honest
party would send on transcript σ with randomness r1 ⊕ r2 on input x1.
Note that this function is well defined, the party is deterministic based on
its randomness, input, and messages received. The witness for the proof is
the randomness r1⊕ r2 and the input. Further note that these two values
must be private and so can’t be part of the statement. However, they
were both “committed” to at the start of the protocol so P1 can prove
they are being consistent with that initial commitment. The statement
for the language is the starting commitments and the current transcript.

In order to be able to force honest behavior we had to make the honest
behavior deterministic. The three things that should effect the honest behavior
are the input, the randomness, and the messages received from other parties.
We split these three things into two piles: input and randomness are committed
to at the beginning but secret, the messages are “public” since there are only
two parties.

We stress this separation because it gets significantly more complicated when
we move to the n party setting. Consider the simple setting with just three
players P1, P2 and P3. We can have parties commit and do a multi party coin
flipping protocol. The trouble arises when we try and emulate the honest be-
havior. Suppose that P2 is supposed to send a message m to P3 that depends
on the message y it received from P1. In order for P2 to prove that m is the
honest message P3 needs to have a full view of the messages received by P2.
There are two issues:

2



1. How do we communicate this view to P3. The two obvious choices are for
P2 to announce the message it received from P1 and for P1 to announce
this message. However, both of these options seem ripe for cheating. If
P2 is announcing the message it might be inconsistent with what they
actually received. If P1 is announcing they can lie about the message they
sent to P2. It is possible to use signatures to prevent this cheating (with
quite a bit of care). However, there is still a second problem.

2. What if seeing y breaks privacy? In the case where both P1 and P2 are
honest. The privacy of the protocol might depend on the two parties
having private communication between them. We could force P1 and P2

to use encryption and thus it is safe to release the message y.

Both of these problems get more complicated as we add multiple parties.
We need to be sure that signatures and encryption are used in the right way.
Furthermore, there is a bigger problem. Consider the case where there are four
parties P1, ..., P4. Suppose that P1 and P2 are malicious. They can use each
other as randomness to set messages in a way that they prefer. So P2 can ask
P1 for a specific y that allows them to act in a malicious way (or in a way that
depends on a received message). Furthermore, these two parties can coordinate
and act as though P1 sent a different message when communicating with P3 and
P4. The core of our maliciously secure transform was to remove all sources of
randomness from the malicious parties and force them to act in a preset way.
While it isn’t clear how to use this freedom it seems very dangerous.

1.2 The full idea

To deal with this problem in full generality requires quite a lot of overhead.
The idea is to make sure that everyone receives every message so that we can
properly enforce semi-honest behavior. However, we still need the ability to
send a message to only one individual so we will encrypt messages on top of this
channel. We transform our protocol in the following two ways:

1. We use point-to-point channels to emulate a broadcast channel where ev-
ery message is received by every party.

2. We use public key cryptography to emulate private channels on top of the
broadcast channel that we are emulating using point to point channels.

The second of these changes is much easier. We add a step to the protocol
where every party broadcasts a public key and then all messages are encrypted
(using a CCA secure encryption) before being sent on the broadcast channel.
Notice this change has a large efficiency hit as we are using broadcast but
only sending messages to one recipient. As we’ll see creating broadcast has an
overhead larger than the number of parties.

1.3 Creating authenticated broadcast

Creating a broadcast channel from point-to-point channels is an area of interest
in both cryptography and distributed systems. The general problem is known as
either byzantine agreement or byzantine broadcast. In the information-theoretic
case it is known that byzantine agreement is not possible if at least one third

3



of parties behave arbitrarily. Creating a broadcast channel is the focus of the
next class.

4


