
CSE 5854: Class 14

Benjamin Fuller

March 8, 2018

1 A semi-honest multi-party computation pro-
tocol

In this class we will define a private protocol for multiple parties. We will
consider only semi-honest behavior where all parties follow the protocol. We
saw how to transform a semi-honest protocol to a maliciously secure protocol
for two parties. The transform is similar but more complicated in the multiple
party setting. We denote by n the number of parties that are participating in the
protocol. We assume that parties are computing a function f(x1, ..., xn) = y.
It is easy to extend to the case where each party receives a different output.

We will assume that parties are able to directly speak to one another. That
is, we assume there is a communication channel between each pair of parties
i, j. We assume that the adversary is not able to see, insert, remove, or modify
messages on any of these channels. Using our previous tools (encryption, signa-
tures) it is possible to implement such channels. We furthermore assume that
channels are synchronous, that is, messages are instantly delivered to the other
party. Building this functionality in practice is not possible. Often protocols
use timeouts but it is possible to manipulate timeouts and drastically delay a
protocol. We also place no limit on the number of adversarial parties that ex-
ist in the system but we assume the malicious parties are decided before the
protocol begins to execute.

We stress that all of the decisions above are important and affect the effi-
ciency and possibility of a protocol existing. With all of these conditions set
we are reading to define an ideal functionality for the protocol. Recall the ideal
functionality is supposed to take inputs and create the output. In the setting
where an arbitrary number of parties can be corrupted we need to reveal the
output to the malicious parties first.

Definition 1 (Ideal Model - No fairness). Let f : ({0, 1}∗)n → {0, 1}∗ be an
n-ary functionality. For I = {i1, ..., it} ⊂ {1, ..., n}, and define I = {1, ..., n} \ I
and (x1, ..., xn)I = (xi1 , ..., xit). A pair (I, S) where I ⊆ {1, ..., n} and S is a
PPT algorithm represents an adversary in the ideal model. The joint execution
of f under (I, S) in the ideal model (on input (x1, ..., xn) and auxiliary input
z), denoted IDEALf,I,S(z)(x1, ..., xn) is defined by selecting a uniformly random
tape for S and defining the output of the protocol as follows:

1. The simulator defines he malicious inputs ~x′I = S((x1, ..., xn)I , I, z, r).
For all parties i ∈ I, x′i = xi.

1

2. S is given y = f(x′). S then either says “output” or “stop”. If S says
“stop” the value of ideal is:

(⊥|I|, S(~xI , I, z, r, y)).

Otherwise if S says “output” the value of ideal is:

(fI(~x′), S(~xI , I, z, r, y)).

We stress a few things. First the only information that S learns about the
input of other parties is contained in the output of f . Furthermore, they don’t
receive this information until they specify an input for all malicious parties.
The ability for S to say output or stop is considered a deficiency of the ideal
protocol and corresponds to our inability to provide fairness in the setting where
an arbitrary number of parties may be malicious. It is possible to limit this
behavior to I that contain certain parties but we ignore this detail.

We also note the important of including the output of the good parties in the
random variable defined by ideal. Without this behavior defining a simulator is
easy, S just runs the real world adversary and makes up inputs for the honest
parties. Including the output of the honest parties forces S to be consistent
with the true output of the protocol. This is especially important in the case
where the function has different outputs for each party.

For the moment our goal is to define an S for any semi-honest A in the
private channels model. (Or rather to define a protocol where we know how to
construct such an S.)

2 The GMW protocol

We are now ready to define the GMW multi-party computation [GMW87]. We
consider a function where each input is a single bit and the output is a single bit.
Again we generalize to more sophisticated functions over more realistic fields.
The first thing we do is have each party secret share it input to all other parties.
Consider some player i, they generate r1, ..., rn−1 and set rn = r1⊕....⊕rn−1⊕xi.

We can think of each party having a share of each other parties input. Our
goal is to operate on these shares in a way that computes the function. We will
show how to perform NOT, XOR, and AND gates directly on shares. We can
then think of our function as described by a circuit made out of these three gate
types (similar to what we did for Garbled circuits). We will assume that each
party i holds a share of each input to a gate G that we are evaluating. Our goal
will be to have party i have a share of the output value of the gate when we are
done. If we can keep this invariant we can privately compute the whole circuit.

2.1 NOT gates

Suppose our input is b and we wish to compute c = 1− b = b+ 1 mod 2. Each
party holds a share of b denoted bi such that

∑n
i=1 bi = b. The key observation

is that a single party can add 1 to their value to create a sharing of c. Suppose
that player 1 (this selection is arbitrary as long as parties agree who player 1
is). Then player 1 computes c1 = b1 + 1 mod 2 while other parties compute
ci = bi for 2 ≤ i ≤ n.

2

We then have the following:

c =

n∑
i=1

ci = c1 +

n∑
i=2

ci = b1 + 1 +

n∑
i=2

bi = 1 +

n∑
i=1

bi = 1 + b.

2.2 XOR gates

We compute the XOR gate directly by operating on players shares. We assume
that the two inputs are x, y and we wish to compute z = x ⊕ y. Each player
has inputs xi, yi which are shares of x and y respectively. We wish to compute
z = x⊕ y. The parties just locally add their two shares zi = xi ⊕ yi. This is in
fact a valid sharing of z.

z =

n∑
i=1

zi =

n∑
i=1

(xi ⊕ yi) =

(
n∑

i=1

xi

)
⊕

(
n∑

i=1

yi

)
= x⊕ y.

2.3 AND gates

Computing AND gates is significantly more complicated then either XOR and
NOT gates. We again assume that parties have inputs xi, yi which are sharings
of x and y respectively. Our goal is compute a sharing of x · y. First we right
the expanded z in terms of shares of x and y. We have that

z = xy =

(
n∑

i=1

xi

)
·

(
n∑

i=1

yi

)
.

Unfortunately, unlike the XOR case this expression has n2 terms:

z =

n∑
i=1

n∑
j=1

(xi · yi)

=

n∑
i=1

xiyi +

n∑
i=1

 n∑
j=i+1

xiyj + xjyi

 .

Furthermore, while n terms are computable by individual parties (namely xi ·yi)
most of the terms contain values that are distributed between parties. A natural
idea is to try and announce some subset of the values xi, yi to other parties to
allow them to perform the computation. Unfortunately, if n − 1 parties are
controlled by the adversary even revealing a single share can completely break
privacy.

The idea is rather than directly computing xiyj to compute a secret sharing
of this value between the two parties i and j. Then since this value is linear it
also works as output share. Specifically we will focus on two parties i and j.
We want them to hold a sharing of xiyj ⊕ xjyi at the end of the protocol. We
will then add this sharing to the values xiyi and xjyj held by parties i and j
respectively. If we do this for all pairs of parties we will have each party holding
a value that when collected add to z (we show this describing how to obtain the
sharing). Without loss of generality we assume that i < j. The idea is for i to
simply pick a random bit (which we call ri,j). Our goal is to then give party j

3

the value ri,j + xiyj + xjyi. Then if these values are later added they will yield
xiyj + xjyi. We write the value that j should receive as a partial truth table:

xj yj ri,j + xiyj + xjyi
0 0 ri,j
0 1 ri,j + xi

1 0 ri,j + yi
1 1 ri,j + xi + yi

We have intentionally defined the truth table in terms of j’s values as the
value that j should have is defined purely in terms of values that i holds. Thus,
it is possible to send the right value to j using a 1-out-of-4 oblivious transfer
protocol.

Consider some party i after they have executed this protocol with all other
j. The party i now holds n values. These are:

Value Number Value Held
1 r1,i + x1yi + xiy1
2 r1,i + x2yi + xiy2

....
i xiyi

i + 1 ri,i+1

... ..
Each party then adds the n values they hold (which defines the new share

zi):

zi = r1,i + x1yi + xiy1 + ... + ri−1,i + xi−1yi + xiyi−1 + xiyi + ri,i+1 + ... + ri,n

We note when all of the zi are added the values ri,j occur exactly twice in
the summation. That is,

z =

n∑
i=1

zi =

n∑
i=1

xiyi +

n∑
i=1

 n∑
j=i+1

xiyj + xjyi

 .

Thus, we have retained our invariant of having a good sharing of the output of
the gate.

This protocol is repeated for each gate in the circuit. At the end of the circuit
all parties announce their shares and the output can be recovered. This protocol
is a semi-honest multi-party computation protocol in the private channel model
for any function that is computable in polynomial time. We note that NOT
and XOR are very efficient while AND requires a n − 1 calls of 1-out-of-4 OT
for each party yielding n(n− 1) calls to OT for each multiplication.

References

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play
any mental game. In Proceedings of the nineteenth annual ACM
symposium on Theory of computing, pages 218–229. ACM, 1987.

4

