CSE 5854: Class 13

Benjamin Fuller

March 1, 2018

1 Building multi party functionality

Following the previous class’s formalization of security we are going to extend
to a private multi party protocol. It is natural to try and extend the protocol
we used for the two party case (Yao’s garbled circuits). Let us suppose that we
have parties Py, ..., P, and we assume that P; constructs the Garbled circuit.
While a player P, can be given the Garbled circuit its unclear how to deal with
the inputs of other players. We could try and design a variant of oblivious
transfer when there are three players P specifies the strings, P> receives the
string, and P; provides the bit. However, it is impossible for this construction to
be secure if P, and P, are acting maliciously and collaborating. This is because
they can easily determine the bit b by combining their values. Other variants
of an oblivious transfer like protocol suffer from similar issues, small number of
participants can learn other parties inputs (making simulation impossible).

Instead the first multi party protocol [GMWS8T] takes a different approach
that combines oblivious transfer with a new primitive called secret sharing. The
idea is to split up each input in a way that no party learns any information about
the input. We will then show how to compute through a computation circuit
gate by gate. This will be done on the “shared” values directly. The final step
of the protocol will then be to reconstruct the output of the circuit.

2 Secret Sharing

Secret sharing was introduced by Shamir in 1979 [Sha79]. A t-out-of-n sharing
of a secret z is an encoding of the secret into n pieces, called shares, such
that any ¢ shares together can be used to reconstruct x but fewer than t shares
give no information at all about x. It consists of two algorithms: Share and
reconstruct or Rec.

1. (81,...,8n) ¢ Share(z) takes in a secret x and produces n shares.

2. ¥ < Rec(sy;, ..., 8;,) takes in ¢ secret shares and returns the reconstructed
secret I.

Let Z C {1,...,n}, define the random variables Sz, as the restriction of
Share(z) to the values in Z. We want two properties out of a secret sharing
scheme. These are naturally correctness and secrecy.

1. Correctness: For all z, for all sets Z C {1,...,n} such that |Z| = ¢ then

Pr[Rec(Sz,) =] = 1.

2. Security: For any two x1,z2 for all sets Z C {1, ...,n} such that |Z] < ¢.
For all s;,, ..., s4,,

Pr[SI,ml = Sipy ey Sit] == PI‘[SI7w2 = Si1y ey Sit].

Note the drastic change we ask from the scheme, when only ¢ — 1 shares
are presented the secret should be independent of the shares. However, once t
shares are present the secret becomes completely determined. It is possible to
define secret sharing for other “access structures” for example a player ¢ must
participate for reconstruction to work properly.

2.1 A basic scheme

We'll now define a very simply secret sharing scheme that is based on a gen-
eralization of the one-time pad. The idea is to construct n — 1 random keys
distributed these to players 1,...,m — 1 and the encrypted value to the last
party. That is:

Share(z) :

1. Generate random s1, ..., S,_1.
2. Set s, =P S1 P ... D Sp_1.
3. Output s1, ..., Sp.

Reconstruction follows by simply adding all values. Correctness of the
scheme is immediate. Security is also simple. Suppose that Z (where |Z| < n—1)
does not include n then the shares have no information about z and thus are
independent. However, if n € Z there must be some ¢* that is not included in Z
thus the value s, can be viewed as s,, = x & r;« @ y for some (possibly) known
value y. Since r;« is uniformly distributed the value s, is independent of x.

This type of secret sharing scheme is known as linear which means that it
is possible to perform operations on shares that result in a linear operation on
the underlying value. For example if sq,...,s, is sharing of y and rq,...,7r, is
sharing of x then r; ® s1,....,7, ® s, is a sharing of = @ y. This is because
2BY=(r1@D.8r,) B(51D...®8n) =(r1®s1)D... ® (1, @ sp). Similarly, for
some fixed value a is possible to produce a sharing of axz by operating on the
shares. The scalar a is just multiplied by each value. Then

ar=a(r1 ®...0r,) =ar1 O ... D ary,.

2.2 Shamir’s Scheme

The previous scheme works well for the case where we want privacy when all
other players may be malicious. However, sometimes we will want to continue
if some players stop participating in the protocol. An n-out-of-n secret sharing
is incapable of helping with this task. Shamir showed how to construct a t-
out-of-n secret sharing for any 2 < ¢t < n. We consider some finite field F.

As a reminder, a finite field supports multiplication, addition, subtraction, and
division (by things other than 0). For our purposes we can think of Z; but
there is a finite field for binary strings of each length. The core of the scheme
is to generate polynomials with an intercept of x. Suppose the polynomials
generated are of degree ¢ — 1. Polynomials have two important properties:

1. A polynomial of degree at most ¢t — 1 is uniquely defined by any collection
of ¢t points.

2. In a finite field, knowing the value of any ¢ — 1 points does not tell you
the value of the polynomial at any other point. In particular, it does not
tell you the value of the polynomial’s intercept.

These two properties correspond to correctness and security respectively. We
first present the basic scheme:

SShare;(a):

1. Generate ay,...,a;_1 <i F.

2. Define the polynomial f(2) =a+ay -2+ ... +a;_1 - 271

3. For all 1 <i<mn,sets; = f(i).
4. Release to player i, (i, s;).

To describe the reconstruct algorithm requires an algorithm called Lagrangian
interpolation. Lagrangian interpolation allows one given ¢ points to exactly con-
struct the unique polynomial of degree at most t—1. That is, given (z1,y1), ..., (Tt, Yt)
where all z; are distinct one can construct the polynomial as:

t
def
L(z) =) yity(2).
j=0
here each ¢; is known as a Lagrange basis polynomial and is defined as:
def Z— Tm
G = —=
. Lj — Tm
0<m<t,m#j

The idea behind each of these £; is to define a polynomial which is 0 at all points
other than j and has a value of 1 at j (which is then scaled to y; in L(z)).
This then immediately leads to the reconstruction algorithm:
Rec(il, Siqy ey (it, Sit)):

1. Find the Lagrangian polynomial L(z).
2. Output L(0).

To show correctness of the protocol we must show that whenever L(z) agrees
with f(z) at t locations they must be the same. This is proved under the
assumption that both L(z) and f(z) are of degree at most ¢ — 1.

Proof. By construction both L and f are of degree at most t—1. Furthermore by
construction L(i;) = f(i;) for 1 < j <t. It suffices to show that L(z) — f(z) =
(L — f)(z) is the zero polynomial. The polynomial (L — f) is of degree at most
t — 1 as it is the sum of two degree t — 1 polynomials. Furthermore, at each
ij, L(i;) = f(i;) and thus (L — f)(i;) = 0. That is, L — f has ¢ distinct zeros.
Since it is of degree at most ¢ by the fundamental theorem of algebra Ly is the
zero polynomial. O

We now move on to showing privacy which is that given ¢ — 1 points on the
polynomial this gives no information about the shared value o. That is we seek
to show that for any a;, as any subset Z of size at most ¢ — 1 is independent of
the shared value. Suppose that the adversary has points (1,y1), ..., (t — 1, y¢—1)
without loss of generality. For any value of the intercept (0,) there is a unique
polynomial f, of degree at most ¢ — 1 that goes through these points. This is
by the same Lagrangian interpolation argument that we used before. Since for
this set of points there is one possible polynomial that has each intercept, the
adversary is unable to infer any information about the intercept based on these
points.

References

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play
any mental game. In Proceedings of the nineteenth annual ACM
symposium on Theory of computing, pages 218-229. ACM, 1987.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM,
22(11):612-613, 1979.

