
CSE 5854: Class 12

Benjamin Fuller

February 27, 2018

1 Maliciously Secure OT

In the first part of this class we covered how to construct maliciously secure
oblivious transfer directly from the decisional Diffie-Hellman assumption. This
material is covered in Class 10 notes.

2 Defining Secure Multi-party computation

We’re going to start moving from building a secure computation between two
parties to multiple parties. Even in the case of two parties we saw our definition
of security getting more and more complicated. As an example, for an interactive
proof we first consider a malicious prover and sad they couldn’t be convincing
when x 6∈ L. We then added a zero knowledge property which talked about
the actions of a malicious verifier. Finally, we considered knowledge extraction
which required us to again strengthen the requirements against a malicious
prover.

This seems like it would get combinatorially more complicated as we add
multiple parties. Some of the natural questions we should consider:

1. Who are we trying to defend against? Is the adversary a single party or
controls multiple parties in the computation?

2. What kind of network resources are available? Can the adversary see every
message that is sent? Can they modify it?

3. Are we concerned about adversaries with unbounded computational power?

4. Does the adversary follow the protocol or deviate arbitrarily?

5. Are we able to ensure that the computation represents some well defined
input on the part of all parties?

6. Are we able to ensure that the adversary’s input(s) are independent of
honest parties input?

7. Is the adversary in a set position at the start of the protocol? Are they
able to decide which parties to adapt mid way through the protocol? Are
they able to move to different positions at different parts of the protocol?

1



8. What do we consider a breach of security? In the zero-knowledge case
this was quite sophisticated, we considered learning anything beyond the
validity of the statement even in the presence of auxiliary input.

To deal with all of this complexity we’re going to make two conceptual
changes:

1. We’re going to switch to a positive definition of security. Instead of asking
that an adversary can’t do things, we will say that the protocol is secure
if the adversary can do only a prescribed set of things. We’ll use the
simulation paradigm (used in zero-knowledge) to make this change.

2. We’ll separate out the question of adversary capabilities from the question
of what the protocol is supposed to do. So we can say a protocol is
“secure” with respect to one class of adversaries but not another class
without changing what it means for a protocol to be secure.

2.1 Real-Ideal

We note that the concerns above can be effectively split into what is considered
“secure” and what an adversary is allowed to do. This new paradigm is called
the real-ideal paradigm. We consider two worlds called the real and ideal world.
In the real world we will consider honest parties executing the protocol Π in the
presence of an attacker or adversary. In the ideal world we will define something
called an ideal functionality. Roughly, an ideal functionality F consists of three
stages:

1. Each party gives its input xi to the functionality F .

2. Upon receiving all inputs xi, F computes f(x1, ..., xn) = y1, ..., yn.

3. The functionality delivers y1, ..., yn.

The idea is that for each attacker A going after the protocol Π in the real
world we should be able to find an attacker S that does just as well interacting
with the ideal world. This is exactly what we required for simulation in zero-
knowledge proofs: if S knew that x ∈ L it was required to produce a transcript
that was the same as what would be produced in the actual zero-knowledge
protocol. More formally we say the following.

Definition 1. [GMW87] Let Π be a protocol between n players. We say that
Π realizes functionality F with respect to adversaries A ∈ A if for every A there
exists a simulator S such that for every x1, ..., xn

A↔ 〈P1(x1), ..., Pn(xn) ≈c S
F (1n).

Note: Recall that the symbol ≈c means computationally indistinguishable.
In the worst case we think of A outputting any inputs, transcripts, and internal
randomness. Thus, it suffices to have S output an indistinguishable transcript.
Furthermore, we implicitly assume the ideal functionality can only be executed
once as honest parties would notice if they were asked to participate twice. Apri-
ori this definition does not allow the simulator to see any inputs of the protocol
and its not clear how the simulator interacts with the ideal functionality. Often

2



we will consider ideal functionalities that allow the simulator to specify that
they would like to control this party. This is usually known as “corrupting” a
party.

We can extend definition 1 to allow parties in the protocol Π to have access to
some resource. This might be a public-key infrastructure, a broadcast channel,
or private channels between each party. The basic definition does not consider
such resources.

References

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play
any mental game. In Proceedings of the nineteenth annual ACM
symposium on Theory of computing, pages 218–229. ACM, 1987.

3


