
CSE 5854: Class 10

Benjamin Fuller

February 19, 2018

1 Moving to secrecy

Zero knowledge proofs (including proofs of knowledge and non-interactive proofs)
will be crucial tools in ensuring honest behavior of participants in interactive
protocols. What we’re going to turn to now is how to perform computation of
any type in secret. We’ll start with a basic situation with two parties P1 and P2

where P1 holds a circuit gate with two inputs (OR, AND, XOR) and P2 holds
two input bits. Note that we can view the gate as P1’s input or we can consider
a fixed gate and have P1 provide one input to the protocol. For the moment
we are only going to consider parties who follow the protocol but try and learn
information they are not entitled to. The first thing that P1 is going to do is
write the truth table for the circuit as follows:

Input 1 Input 2 Output
0 0 b00
0 1 b01
1 0 b10
1 1 b11

The idea behind the scheme is for P1 to encrypt each row of this table with
keys that correspond to the inputs of P2. P2 will then ask for keys according to
its input. So the encrypted table is developed as follows:

Input 1 Input 2 Output
r10 r20 b00
r10 r21 b01
r11 r20 b10
r11 r21 b11

This table is then turned into encryptions:

Encr10(Encr20(b00))
Encr10(Encr21(b01))
Encr11(Encr20(b10))
Encr11(Encr21(b11))

These four encryptions are delivered to P2 (in a random order). Now for P2

to evaluate this computation it suffices for them to get the correct r1∗ and r2∗
according to their input. Then P2 will just try and decrypt each of the four
values they are given (note we require it is possible to detect “bad” decryptions).
We have two privacy properties we are concerned about:

1. P2 should only learn information about a single label for each input.

1



2. P1 should not learn which input P2 is evaluating the gate on.

A protocol does this is called oblivious transfer. P2 gets to pick one value
without seeing the other and P1 learns nothing about which value was picked
by P1.

2 Oblivious Transfer

In oblivious transfer we call the two parties the sender S and receiver R. We
think of an interactive protocol between the two parties.

Definition 1. A pair of interactive Turing machines (S,R) is an oblivious
transfer with error δ if the following hold:

1. Correctness: For all messages m0,m1 ∈ {0, 1}` and b ∈ {0, 1},

Pr[〈S(m0,m1), R(b)〉1 = mb] = 1.

That is, R gets the message mb with probability 1.

2. Receiver privacy: The receivers bit is hidden. That is, for all PPT S∗,

〈S∗(·), R(0)〉1 ≈c,δ 〈S∗(·), R(1)〉1.

3. Sender privacy: The not received message is hidden from the sender.
That is, for all pairs m0,m

′
0,m1,m

′
1 for all R∗ one the following holds:

〈S(m0,m1), R∗(·)〉2 ≈c,δ 〈S(m0,m
′
1), R∗(·)〉2,

or
〈S(m0,m1), R∗(·)〉2 ≈c,δ 〈S(m′0,m1), R∗(·)〉2.

Note: Our definitions are getting more and more complicated as we move
on. This is the last definition that we’ll explicitly state what can’t be learned
or done by the parties. From here on we’ll state the intended behavior of
the protocol and say that learning anything other than the intended behavior
constitutes a breach of security. This will allow us to simplify exposition of
security definitions considerably.

We will occasionally consider the easier task when we assume one or both
of the parties can be trusted to not deviate from the protocol. This is called
semi-honest sender or semi-honest receiver oblivious transfer. In this setting we
simply remove the universal quantifier and consider an S∗ or R∗ that outputs
their entire view (and actually has inputs that they use in the protocol). As
you’ll see on the homework it is possible to construct a semi-honest receiver
oblivious transfer using a public-key encryption scheme. Roughly, the sender
has their bit and generates two public keys one where they know the secret key
and one where they don’t. These are then sent (in the appropriate order) to
the receiver who encrypts both messages. The idea is that the receiver can only
decrypt one.

The hope would be that we can easily transform this protocol into a mali-
ciously secure protocol using a zero-knowledge proof of knowledge.

Discussion Question: Why can’t we apply a ZK PoK to this protocol to
get malicious security?

2



2.1 A DDH based protocol

We start by introducing a sender semi-honest protocol using DDH and El Gamal
encryption. We then show how to convert this protocol into malicious security
using the properties of DDH. As usual let G be a group of prime order p with
generator g.

S

1. Generate c
$← G and send to R.

3. Check that c = pk0 · pk1. If not
abort.

4. Encrypt m0,m1 using El Gamal en-
cryption with public keys pk0, pk1
respectively.

R

2. Receive c, pick k
$← Zp, set pkb = gk and

pk1−b = c · g−k. Send pk0, pk1.

5. Receive c0, c1, decrypt cb.

The idea behind the sender’s first message is to keep R from choosing two
public keys for which they know the secret key. Because the two public keys
must be offset by log(c) this notionally would require them to solve the discrete
logarithm problem. However, this does not keep them from choosing the two
public keys in such a way that they learn some information about both message
x0, x1 without being able to completely decrypt either message.

The goal of the revised protocol is to ensure that R learns partial information
if and only if they knew the exponents of the items they sent (this protocol is
due to Naor and Pinkas [NP99]). (We can think of this as a proof of non-
knowledge.) To do this we will randomize exponents in such a way that if R
knows the exponents it does not hurt and otherwise it destroys all structure and
keeps R from learning anything. In doing so we are also able to let R send the
first message instead of S.

S

2. Receive x, y, pk0, pk1. Verify that
pk0 6= pk1. Check that c =
pk0 · pk1. Randomize (y′0, pk

′
0) ←

Rand(g, x, y, pk0) and (y′1, pk
′
1 ←

Rand(g, x, y, pk1).

3. Set c0 = (y0, x0 · pk′0) and c1 =
(y′1, x1 · pk′1).

4. Send c0, c1.

R

1. Generate c, d compute gc = x, gd =
y set pkb = gcd and pk1−b = gz

where z is random. Send pk0, pk1.

5. Receive c0, c1, decrypt cb.

As stated above the idea behind this protocol is to random pkb in a way
that preserves decryption but randomize pk1−b in a way that destroys decryp-

3



tion (information-theoretically). The trick is to do this “obliviously” without
knowing which is which. The key to the protocol is that only one of the public
keys can be a DDH triple that is gx, gy, gz where xy = z. Rand works as follows:

1. Input g, gx, gy, gz.

2. Pick random a, b← Z∗p

3. Output gy
′

= g(y+b)a = (gy)a · gab,
gz

′
= g(z+bx)a = (gz)a · (gx)ba.

Note if z = xy then the new triple is of the form x, (y + b)a, (xy + bx)a =
x(y + b)a. Furthermore, given the new y value and the ciphertext it is possible
to recover gz

′
if x is known. That is, when Rand is applied on pkb it preserves

the ability to decrypt based on the secret key.
The second part we want to show is that when run on pk1−b this destroys

any partial information. To show this we show that if z 6= xy (which must be
true for at least one of public keys) then there is a unique a, b that produce the
y′, z′ based on the inputs (that is, this is a random triple of exponents). This is
because (y+b)a = y′ and (z+bx)a = z′ are a linear system with two unknowns.
In particular, a = (z′ − y′x)/(z − xy) which is solvable if and only if z 6= xy.

Discussion Question: Why is this protocol still secure against a malicious
sender? What can the sender do to disrupt the protocol?

References

[NP99] Moni Naor and Benny Pinkas. Oblivious transfer and polynomial eval-
uation. In Proceedings of the thirty-first annual ACM symposium on
Theory of computing, pages 245–254. ACM, 1999.

4


