
CSE 5854: Class 08

Benjamin Fuller

February 13, 2018

1 Building Non-Interactive ZK from scratch

In last class we introduced non-interactive proofs and described the Fiat-Shamir
paradigm (sometimes called heuristic). In this class we will build a non-interactive
zero knowledge proof system from scratch using a different random resource.
Rather than both parties having access to a hash function we assume that both
parties have access to a polynomial length random string. This is called a com-
mon reference string or CRS. Note that a CRS can be created using a random
oracle by querying the oracle on increasing location i, i+1, ... and is qualitatively
weaker assumption.

2 NIZK for Hamiltonian cycle

Our protocol is for the Hamiltonian cycle problem. The core of this protocol was
described by Blum, Micali, and Feldman [BFM88]. Recall that in our interactive
protocol for the Hamiltonian cycle the prover committed to a permuted graph
and based on the challenge from the verifier either opened the whole graph and
the permutation or just a Hamiltonian cycle in the graph.

The insight here is to have the random string dictate the random graphs that
the prover would have sent. We will view the CRS as describing a number of
commitments to adjacency matrices. The prover (who we assume can break the
hiding of the commitments) will check to see if these implicit adjacency matrices
describe a Hamiltonian cycle or something else. If the adjacency matrix does
not describe an adjacency matrix the prover will show this. When it does the
prover will map the cycle onto the matrix containing the adjacency matrix.

For now we talk about the bits contained in CRS. We are really referring
to the preimage of a perfectly binding commitment of the string. We view the
CRS σ as n6 perfectly binding commitments of an n3 × n3 adjacency matrix
H where n is the number of vertices in the graph. Furthermore, we assume
that each entry of the matrix is 1 with probability n−5. We say that H is good
if it contains a submatrix C that is a Hamiltonian cycle matrix (a single 1 in
each row and column with the 1s forming a cycle). Furthermore, the rest of the
matrix H is 0. That is, H contains n 1s and the rest of the matrix is 0s.

If H is bad then the prover opens all commitments to the edges of H. The
verifier accepts if H is indeed bad. The first thing to check is that a verifier can
indeed confirm this. It is easy to ensure that out side of some n × n subma-
trix the matrix is 0 and that the submatrix is a Hamiltonian path (checking a

1



Hamiltonian path is easy if there are no other edges as its only the only way to
traverse.

If H is good meaning that it contains a Hamiltonian submatrix (and the
rest are 0), then prover computes a permutation π to submatrix C and opens
all locations in H except for edges of the permuted graph π(H) in C as well as
providing π.

Before trying to analyze this protocol lets review some intuition. First, the
fact that we are considering a submatrix C of a larger H is entirely to get the
soundness probability to work out. Its not crucial for the overall understanding
of the protocol.

The second main idea is that when C actually has a Hamiltonian submatrix
by opening all of parts of C that aren’t edges in π(G) we know that π(G) can
be embedded into a Hamiltonian submatrix. To analyze the protocol we need
the following:

1. The probability of H containing the Hamiltonian submatrix is noticeable.
(It is Ω(n−3/2), this is shown in section 4.10 of Goldreich.)

2. When H is good it cannot be passed off as bad. (This is clear because the
entire matrix is opened and its easy to check). So if a good H is sad to
be bad the prover will be caught with probability 1.

3. When H is bad there is no reason to cheat as H can just be opened. So
passing a bad H off as good does not increase the probability that P ∗ can
succeed.

4. An understanding of whether P ∗ can cheat when H is good and claimed
to be good H.

We focus on the last fact now. We begin by assuming that H is good. Since
π is provided V can compute π(G). It can therefore check if all non edges of
π(G) have been opened. This then means that the Hamiltonian path C is a
subgraph of G in the sense that π−1(C) ⊆ G (otherwise the verifier would not
that at least one of these edges was not opened). Thus if the commitment is
perfectly binding when x 6∈ L the prover is caught with probability 1 when H
is good.

Together this allows us to analyze

Pr[P ∗ can cheat] = Pr[P ∗ can cheat|H is good] Pr[H is good]

+ Pr[P ∗ can cheat|H is not good] Pr[H is not good]

= 0 · Ω(n−3/2) + 1(1− Ω(n−3/2)) = 1− Ω(n−3/2).

As we’ve seen before this can be amplified by asking for a large number of
proofs (enough to expect good Hs to occur with high probability).

We first describe how to simulate this protocol. Here S is allowed to both
create the proof and the CRS σ. We describe how to create σ the description
of the corresponding proof should be clear to the reader. First the simulator
samples honestly n3 × n3 matrix (here we think of them sampling the bits and
computing the commitment). If the sampled matrix H is not good then this
matrix is placed in the CRS. However, if H is good then S throws out the matrix

2



H and replaces the submatrix C with a π permutation of their starting graph G.
This new matrix is placed in the CRS. Then process is repeated if the protocol
is being sequentially composed. First note that the replaced matrix produced
by S is not good in that it has too many edges (assuming G has more edges than
a Hamiltonian cycle). Then S will honestly open all of the matrices. The only
point where S is lying is claiming that the modified matrix is actually good.
Its often the case that this S never puts a good matrix in the CRS however
assuming a computationally hiding commitment scheme this doesn’t effect the
view too much (this should be verified).

3 Moving to secrecy

Zero knowledge proofs (including proofs of knowledge and non-interactive proofs)
will be crucial tools in ensuring honest behavior of participants in interactive
protocols. What we’re going to turn to now is how to perform computation of
any type in secret. We’ll start with a basic situation with two parties P1 and P2

where P1 holds a circuit gate with two inputs (OR, AND, XOR) and P2 holds
two input bits. Note that we can view the gate as P1’s input or we can consider
a fixed gate and have P1 provide one input to the protocol. For the moment
we are only going to consider parties who follow the protocol but try and learn
information they are not entitled to. The first thing that P1 is going to do is
write the truth table for the circuit as follows:

Input 1 Input 2 Output
0 0 b00
0 1 b01
1 0 b10
1 1 b11

The idea behind the scheme is for P1 to encrypt each row of this table with
keys that correspond to the inputs of P2. P2 will then ask for keys according to
its input. So the encrypted table is developed as follows:

Input 1 Input 2 Output
r10 r20 b00
r10 r21 b01
r11 r20 b10
r11 r21 b11

This table is then turned into encryptions:

Encr10(Encr20(b00))
Encr10(Encr21(b01))
Encr11(Encr20(b10))
Encr11(Encr21(b11))

These four encryptions are delivered to P2 (in a random order). Now for P2

to evaluate this computation it suffices for them to get the correct r1∗ and r2∗
according to their input. Then P2 will just try and decrypt each of the four
values they are given (note we require it is possible to detect “bad” decryptions).
We have two privacy properties we are concerned about:

1. P2 should only learn information about a single label for each input.

2. P1 should not learn which input P2 is evaluating the gate on.

3



A protocol does this is called oblivious transfer. P2 gets to pick one value
without seeing the other and P1 learns nothing about which value was picked
by P1. This will be the focus of the following class.

References

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications. In Proceedings of the twentieth annual
ACM symposium on Theory of computing, pages 103–112. ACM, 1988.

4


