
CSE 5854: Class 08

Benjamin Fuller

February 13, 2018

1 Zero Knowledge Proofs of Knowledge

Last class we introduced the idea of a proof of knowledge which assured that a
prover had a “witness in mind” when they were proving something. The goal
was to prevent malicious provers from forwarding proofs from other parties or
manipulating other individuals proofs (there are other technical reasons as well).
However, introducing the zero-knowledge property seemed to be at conflict with
zero-knowledge. Setting things up to be easy for the simulator to rewind seemed
to make it difficult for an extractor to rewind. The crux of the problem is the
simulator wants to get the malicious verifier to fix their actions (often thru
commitment) and be able to change. The extractor wants to do the same with
the malicious prover. However, there is tension between which party does this
first.

To untie this knot we have to actually modify the internals of the protocol
(its not enough to add commitments). However, this change works for any zero-
knowledge proof that is “public-coins” where all the verifier sends as messages
is randomness that isn’t determined by the prover.

The main idea is to allow the prover to “contribute” to the coins that will be
used by the verifier. However, we are only trying to give power to the simulator
and not actually allow a malicious prover to impact anything. To keep our
discussion clear we’ll remove some of the details of the protocol. Most of the
core protocols we saw were of form: prover commits to some hard problem,
verifier asks to see some part of solution, prover responds with solution (three
messages). So we can talk about the prover’s first message p1, verifiers message
v, and provers second message p2. Our proof of knowledge (which isn’t clear
how to parallelize is as follows):

P

1. Send p1

3. Open p1 as specified in v as p2.

V

2. Send v

4. Verify transcript (p1, v, p2).

The simple way to modify this protocol for parallel execution is to make v
commit to its input before p1. This results in a five message protocol as follows:

1

P

1. Send commitment key ck to V .

3. Send p1

5. Open p1 as specified in v as p2.

V

2. Commit to v using ck.

4. Open v.

6. Verify transcript (p1, v, p2).

We make two main changes here. First we’re going to move the prover’s
message to the beginning of the protocol. Second we’re going to allow the
prover to announce part of the random coins that will be used for the verifier’s
randomness. This announcement needs to be before these coins are revealed.
The new protocol looks like this.

P

1. Send p1 and commitment key ck to
V .

3. Commit to random value q2.

5. Verify opening of q1, open q2, open
p1 as specified in v = q1 ⊕ q2.

V

2. Commit to q1 using ck.

4. Open q1.

6. Verify opening of q2, verify transcript
(p1, v = q1 ⊕ q2, p2).

Lets look at the basics of this protocol. The first is that a simulator only
needs to rewind exactly once. In step 1 they select a random value v that
they’ll be able to answer questions on. They then get V ∗ to commit and open
its commitment to q1 before rewinding and committing to q2 = v ⊕ q1. The
knowledge extractor works as we saw before we run to get an accepting transcript
and then rewind until after step 1 and choose a new q1. Note its possible that
P does not use a random value for q2 so we have to be careful about ensuring
that v is likely to be a new value with high probability.

A natural question to ask is why the prover commits to a random value
instead of just sending q2. As one might suspect this is to improve the quality
of simulation. The crux of the issue has to do with aborting V ∗ that we’ve talked
about in the previous class. Once we know q1 we only have one possible message
that the simulator can respond with. If V ∗ happens to abort on that message we
are out of luck since we have to use that q2. The use of a commitment allows us
to randomize the second message of the prover and improve the probability that
we can get V ∗ to accept. Note that before we were preparing different matrices
based on V ∗ commitment and this allowed a natural place for randomization.
Since we’ve already fixed the graph we’re using we need some place to randomize
V ∗.

2 Collapsing interaction

In all of the zero-knowledge proofs that we’ve seen so far the only role of the
verifier is to flip random coins to determine which part of the hard problem

2

that P should open. The fact that the verifier flips these coins was crucial
for two reasons 1) it ensured that they were uniformly distributed so that a
cheating prover couldn’t produce openings that seemed random 2) the prover
didn’t know the coins ahead of time so they had to be “ready” to answer both
challenges. We may ask for another source of randomness (that can be verifier
by both parties) instead of having the verifier create the challenges. However,
then the prover may be to able to prepare transcripts ahead of time it seems
hard to argue security in this setting.

Before continuing one should note if we don’t have access to some random
source we have no hope for an interactive protocol. This is because a good
prover should always be able to convince a verifier on x ∈ L and no prover
should be able convince V when x 6∈ L. We can directly use the message
output by the prover as a witness and the verifier’s code as the relation RL.
Thus, the prover message can be seen as w and the protocol cannot possibly be
zero knowledge as the verifier has now learned a witness. After knowing that
some randomness is necessary it still isn’t clear what it means to simulate a
non-interactive protocol. If a simulator S can produce a good message without
having access to the witness it doesn’t seem like access to a witness is important
and it seems to put the language polynomial time. It doesn’t seem like there is
a natural way for the simulator to have additional power over a cheating prover.

This is where we connect the randomness. In non-interactive zero-knowledge
we allow the simulator to set the randomness used by the parties. This also
goes towards showing non-transferability of the proofs. If a verifier has (x, p)
executed on some random resource σ they can’t convince another player of x’s
validity unless they can demonstrate the “randomness” of the resource σ. A
simulator could give another resource that “looks” the same.

Definition 1. A pair of probabilistic machines (P, V) is called non-interactive
proof system for L if V is polynomial time and the following two conditions hold
for some random resource Σ:

1. Completeness: For every x ∈ L,

Pr[V (x,Σ, P (x,Σ)) = 1] ≥ 2/3.

2. Soundness: For every x 6∈ L and every P ∗:

Pr[V (x,Σ, P ∗(x,Σ)) = 1] ≤ 1/3.

Definition 2. A non-interactive proof system (P, V) for L is zero-knowledge
if there exists a polynomial time S such that

(x,Σ, P (x, σ)) ≈c S(x).

that is the simulator produces the same view with the ability to create a random
resource.

The natural way to try and produce a zero knowledge proof is to run an
interactive proof but have Σ do the random coins. For concreteness we assume
that the shared resource is a random oracle [BR93]. That is, we assume that
both parties have to a random function H : {0, 1}∗ → {0, 1}` that is selected

3

apriori. We often think of this function as being implemented by cryptographic
hashes but note that the existence of a random oracle is not an assumption on
any particular hash function. The idea of using a random oracle to make proofs
non-interactive is due to Fiat and Shamir [FS86] and was originally introduced
for creating signatures from identification. Naturally this design is called the
Fiat-Shamir paradigm. Recall the proof systems we’ve been using have the form
p1, v, p2 where v is a random string from the verifier. To make this system non-
interactive the prover uses v = H(p1) as the random coins of the verifier and
sends the pair p1, p2 at the same time. The verifier then queries H(p1) to get v
and computes acceptance as though the transcript was p1, v, p2. Its easy to see
that this system is complete as the distribution produced by P is exactly what
would be seen in the interactive setting.

Arguing soundness is a more difficult task. As we noted earlier one of the
advantages of using the verifier is that the prover doesn’t know what the ran-
domness will be when preparing p1. Here v is randomly distributed for any p1
however the prover sees v before deciding whether to send p1. So the prover
can prepare a p1 that they will only be able to answer with probability 1/2 and
if v is wrong value they just prepare a new p′1. If soundness error of the proof
is relatively high say 1/2 the prover can always find a p1 that they can answer
quickly. However, if the soundness error for the proof system is relatively low
say 2−k for k = p(|x|) then we hope that with a bounded number of queries to
the random oracle the adversary can’t bias the randomness too much and that
the proof retains some soundness. Unfortunately, this analysis is not modular
and must be redone for every protocol that Fiat-Shamir is used in. There are
some applications where this analysis carries through [PS96]. Importantly, use
of a random oracle is crucial here, security can often break when using any
hash function [GK03]. To get around this difficulty next class we’ll build a
non-interactive proof from the ground up using a different random resource a
long random string that is known by both parties (which can be created using
a random oracle).

References

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Proceedings of the 1st
ACM conference on Computer and communications security, pages 62–
73. ACM, 1993.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Conference on the Theory
and Application of Cryptographic Techniques, pages 186–194. Springer,
1986.

[GK03] Shafi Goldwasser and Yael Tauman Kalai. On the (in) security of the
fiat-shamir paradigm. In Foundations of Computer Science, 2003. Pro-
ceedings. 44th Annual IEEE Symposium on, pages 102–113. IEEE, 2003.

[PS96] David Pointcheval and Jacques Stern. Security proofs for signature
schemes. In International Conference on the Theory and Applications
of Cryptographic Techniques, pages 387–398. Springer, 1996.

4

