
CSE 5854: Class 07

Benjamin Fuller

February 8, 2018

1 Using Zero-Knowledge

Last reading we saw how to build a zero knowledge protocol with overwhelm-
ing soundness and completeness in a constant number of rounds (using parallel
repetition). Our motivation for introducing zero knowledge was to enforce hon-
est behavior in a joint computation. We’ll now see if we are ready to build a
computation from these zero-knowledge proofs.

We’ll consider a classic example of rock-paper-scissors. There two players P0

and P1 who think of numbers ni{0, 1, 2} and Pi wins if ni = n1−i + 1 mod 2.
(The standard formulation of rock, paper, scissors can easily be translated to
this setting.) The classic way this game is played is for both players to be
in the same play and simultaneously announce their moves. Unfortunately,
requiring simultaneous action is difficult. (There is a robot that always wins
rock paper scissors by seeing what a human is doing and quickly doing the
winning move https://www.youtube.com/watch?v=3nxjjztQKtY.) Using the
tools we’ve seen so far a natural solution is to force each player to commit to
their action before things are announced. For concreteness we’ll assume use of
Pedersen commitment.

P0

1. Input b0 and g, h ∈ Zp.

2. Sample r0 ← Z∗p. Set c0 = gr0 · hb0 .

3. Send c0 to P1.

7. Receive c1.

8. Open c0 (by sending b0, r0).

11. Receive b1, r0 ensure commitment
verifies.

12. Compute winner.

P1

1. Input b1 and g, h ∈ Zp.

4. Receive c0 from P0.

5. Sample r1 ← Z∗p. Set c1 = gr1 · hb1 .

6. Send c1 to P1.

9. Receive b0, r0 ensure commitment verifies.

10. Open c1.

12. Compute winner.

1

It seems like this has fixed the problem as both parties have to compute a
commitment before seeing an opening and thus both parties have to be honest.
However, this is not the case. Suppose that instead of sampling r1 and comput-
ing c1, P1 does the following: set c1 = c0 ·h. This value c1 is a valid commitment
and P1 can send it and execute the protocol. P1 however has no idea what value
they just committed to. However, on seeing the opening from P0 they can prop-
erly produce a decommitment value and they win whenever b0 ∈ {0, 1}.1 You
might say this behavior is easy to catch, however I can fully randomize this
behavior by multiplying this value by gr1 for some random power r1. The goal
of zero-knowledge was to enforce honest behavior. We might ask each party (or
just P1) to compute a zero-knowledge proof that they have produced a “good”
commitment. We could easily ask each party to prove that their value is in the
output space of the commitment scheme.

This doesn’t prevent the behavior that we’re concerned about for two rea-
sons: 1) every value in Zp is a “good” commitment so there’s “nothing” to
prove and 2) we’re really trying to prevent c1 from depending on c0. We’ll try
and address problem 2 first. We could require that the two parties “commit”
to the randomness that they are going to use first to prevent their commit-
ments from being related. However, we’d then have the same problem on those
commitments.

We’re going to address both of these problems by strengthening zero-knowledge
by requiring more from the prover. We want the prover to “know” the value
they are proving. For statements in NP we can say that we want the prover
to know some witness w. In the example we saw P1 does not “know” values b1
and r1 that open its malicious commitment (until seeing values from P0).

As we saw defining “knowledge” was a bit tricky. To say that the verifier
gained no knowledge we showed how to simulate the verifiers view without
knowing a witness. Recall that the simulator had extra power to depend on
the verifier (and thus reset, snapshot, rewind). We’ll follow the same tact here.
We’ll define another machine that interacts with the prover and should be able
to output the witness. We’ll call this machine an “extractor” named so because
it extracts the witness from a prover.

Definition 1. Let L ∈ NP be a language. A proof system (P, V) for L is a
proof of knowledge with soundness error δ(|x|) if ∀x,∀P ∗. there exists E with
oracle access to P ∗ such that

Pr[w ← EP (x)(x) ∧ (x,w) ∈ RL] ≥ Pr[〈P ∗, V 〉(x) = 1]− δ(|x|).

Here E is given oracle/black-box access to P ∗ this means that they are
allowed to send messages to P ∗, reset it, and rewind it. However, they are
not allowed to look at its internal state. There are simulators that look at the
cheating verifiers state though we are not going to discuss them in class. This
area is called non-black box zero knowledge and is a very interesting topic for
research. The intuition here is that if you can interacting with a prover multiple
times zero knowledge becomes complete knowledge. Thus, it seems that zero-
knowledge and proving knowledge are at odds, making the extractor’s job easier
seems to make the simulator’s job more difficult and vice versa. However, it is
possible to achieve both properties simultaneously. It is important to note that

1The mismatch of groups keeps rounding from working if b0 = 2.

2

this definition is required for all cheating provers that are able to convince the
verifier with probability over δ. If a prover convinces V with probability less than
δ then the knowledge extraction is only guaranteed to occur with probability
0. Lastly, knowledge extraction can replace soundness which seems a little odd
at first as knowledge extraction doesn’t talk about whether x is in L. (You’ll
prove this on the next homework.)

We’ll start by giving a simple proof of knowledge for discrete logarithm.
Here both parties will input g, h where gx = h and the prover will show that
they “know” x.

P

1. Input g, h and x where gx = h
mod p.

2. Sample r ← Z∗p. Send y = gr to V .

4. Receive c.

5. Compute z = cx+ r send to V .

V

1. Input g, h ∈ Zp.

3. Receive y from P .

4. Sample c← Z∗p, send to P .

6. Check if gz
?
= hc · y.

Before showing a knowledge extractor lets note the intuition behind this
protocol. First, the value r is used to blind the other responses of P . Without
this value P would be sending z = cx and V could easily solve for x and learn
the discrete log. This would prevent the system from being zero-knowledge.
Roughly r serves as a one time pad for x however V is also presented with
gr so one has to check that this actually remains zero-knowledge. The idea
behind knowledge extraction is that the prover is able to “solve” random linear
equations that involve x. The nice thing about linear equations is that without
enough instances the solution is completely random.

The knowledge extraction argument is remarkably similar to the proof of
binding for Pedersen commitments. Consider a prover P ∗ that is interacting
with E. Here E just honestly executes the protocol and gets z, c. It then
rewinds P ∗ (to after step 2) and reexecutes the protocol to get z′, c′. Before
trying to compute a witness it checks that both repetitions of the protocol were
successful. It then computes

z − z′

c− c′
=
cx+ r − (c′x+ r)

c− c′
=

(c− c′)x
c− c′

= x.

The main difficulty in analyzing this protocol is that the cheating prover P ∗

doesn’t have to do the right thing all of time. It could answer half the time
with ⊥ (just aborting the protocol). Since E is running P ∗ twice it will see
a ⊥ more frequently (with probability 3/4). The natural solution to this is
to repeat the experiment more times. However, you need to be careful about
remaining polynomial time. Since E does not know apriori how frequently P ∗

fails to output a good z it is difficult to distinguish between a P ∗ that almost
always outputs ⊥ and a P ∗ where you just happened to get unlucky in terms
of experiment randomness.

3

The most natural way to deal with this is to have the extractor first run
P ∗ multiple times with completely independent transcripts to judge its success
probability that is how often it convinces an honest verifier. If this probability
is too small (negligible) then we simply give up and don’t use P ∗ Otherwise,
we know how frequently P ∗ will succeed and we can rewind multiple times
(proportional to this success probability). This strategy works when P ∗ succeeds
with inverse polynomial probability however, Es strategy is still murky when
P ∗ succeeds with negligible probability. E can try and do something more
sophisticated in this case like trying to guess w itself. It only has to be successful
a negligible fraction of the time so this might be something that is possible in
polynomial time. However, one has to be careful on the connection between
how frequently E outputs a witness and how frequently P ∗ succeeds. These are
two different negligible functions and the definition requires E to be successful
more frequently.

2 Proof of Knowledge for NP
It turns out that we have already constructed a proof of knowledge for all of
NP with our zero-knowledge proof of the existence of a Hamiltonian cycle. We
review that protocol here for completeness.

Recall that a graph has a Hamiltonian path if there exists a list of edges
(u1, v1), ..., (u`, v`) that “touches” every vertex of the graph once (all nodes
except the source and sink are repeated).

The protocol proceeds as follows:

P

1. Input G and cycle.

2. Pick random permutation π.

3. Commit to adjacency matrix of
π(G) and π and send to V .

6. Receive b.

7. If b = 0 open all commitments.

8. If b = 1 open commitments on the
cycle.

V

1. Input G.

2. Pick b← {0, 1}.

4. Receive commitment to adjacency matrix
and commitment to permutation.

5. Send b to P .

9. Verify commitments. If b = 0 check if matrix
is π(G). If b = 1 check that a cycle was
revealed.

Its not hard to see that is a proof of knowledge (with soundness error 1/2).
For any P ∗ it either succeeds with probability 0, 1/2 or 1 (we can assume that
P ∗ is not random and it uses the “best” randomness to convince the verifier,
this lets us consider only the verifier’s randomness). We show that we succeed
in extracting with P ∗ works with probability 1 (we are allowed to never succeed
when P ∗ succeeds with probability 1/2 or 0).

4

We know describe an E for such a setting (recall that E does not need to
respect the honest V ’s behavior). After receiving the commitments we send the
challenge b = 0 and get the response. We then rewind P ∗ and send b = 1 and
get the response. Since the verifier would always accept both of these responses
are of the right form. Thus we have been told a permutation π of G and a
Hamiltonian cycle in the permuted graph G′ = π(G). We simply compute
π−1(G′) to find a Hamiltonian cycle in the original graph.

This proof is also zero knowledge. Consider the following simulator S for
any V ∗:

1. Repeat some k times.

(a) Flip b′ ← {0, 1}.
(b) If b′ = 0 commit to a random permutation π of G and π itself.

(c) If b′ = 1 commit to the all 1s adjacency matrix.

(d) Send values receive b.

(e) b = b′ output transcript, otherwise go to step (a).

5

