
CSE 5854: Class 06

Benjamin Fuller

February 6, 2018

1 Constant Round Zero Knowledge

In the previous section we saw how to construct a zero knowledge protocol for
all of NP with completeness 1 and soundness 1 − 1/|E| (for the graph we use
for 3-colorability). In addition, we saw that we cannot automatically parallelize
zero-knowledge. However, it does not mean that concurrent parallel application
does not work for this particular zero-knowledge protocol. (The protocol we
discuss today was first put forth by Goldreich and Kahan [GK96].)

We consider two toy examples of a “parallel” 3-colorability proof. First
consider the following:

Recall that P has auxiliary input π that is a 3-coloring of the graph G.

1. The prover inputs G, π.

2. The prover samples ck ← Setup(1|x|). The prover selects a random ψ :
{0, 1, 2} → {0, 1, 2} and computes φ = ψ ◦ π.

3. For each vertex u ∈ V , P creates (cu, du) ← Commit(φ(u)) and sends cu
to the verifier (as well as ck).

4. V randomly selects k random edges u, v and sends these edges to P .

5. The prover receives some k edges u, v and sends du and dv to V .

6. The verifier computes uc ← Open(cu, du), vc ← Open(cv, dv) and accepts
iff uc 6= vc for all received edges.

Note that this solution only requires 3 rounds of communication and is fairly
efficient as well with total communication roughly |V | · k + k · k if we assume
that commitments and openings are also of size of the security parameter k.
However, its fairly easy to see that this protocol is not zero-knowledge. If k ≥ |E|
a cheating verifier can ask for each vertex to be included in some requested edge
and learn a 3-coloring of the graph from the prover’s response. Its not difficult
to see that this interaction cannot be simulated. We found a simulator for the
one edge setting by the fact that a random coloring worked for a single edge
with high probability (but it was not consistent). Here the simulator somehow
needs to be consistent in its coloring which it can’t do. Note that even when
k < |E| it isn’t hard to see that there exists an auxiliary input of V ∗ that allows
for complete witness recovery after k interactions that can’t be simulated (a
partial coloring of the graph).

1

A natural way to overcome this problem is to disconnect the edges that the
simulator has to try and color. In essence we have the graph no longer be shared.
The protocol looks as follows:

1. The prover inputs G, π.

2. The prover samples ck ← Setup(1|x|).

3. The prover selects k random ψk : {0, 1, 2} → {0, 1, 2} and computes φi =
ψi ◦ π for 1 ≤ i ≤ k.

4. Perform the following for 1 ≤ i ≤ k:

For each vertex u ∈ V , P creates (ci,u, di,u) ← Commit(φi(u)) and
sends ci,u to the verifier (as well as ck).

5. V randomly selects k random edges u, v and sends these edges to P .

6. The prover receives some k edges (ui, vi) and sends di,u and di,v to V .

7. The verifier computes ui,c ← Open(ci,u, di,u), vi,c ← Open(ci,v, di,v) and
accepts iff ui,c 6= vi,c for all received edges.

Note that this protocol still executes in three rounds. However, the overall
communication has grown by a multiplicative factor of k as we have the vertices
separately committed k times. Its not clear this protocol has a trivial attack
by a malicious verifier V ∗ as learning many local colorings of edges does not
lead to a global covering. However, its also not clear that we can simulate this
protocol for a malicious verifier V ∗.

Assume we use the same simulator as the basic protocol that commits to a
random coloring. Here (assuming for a moment that the commitment scheme is
perfectly secure) we expect to answer all of the edges requested by the verifier
with probability of (2/3)k. We can reinitialize the verifier V ∗ as many times as
we like and we still aren’t likely to get a set of good edges. With overwhelming
probability in every execution the verifier will ask for some edge that wasn’t
consistent.

So far all of the simulators we’ve seen have done the same thing, they have
tried to prepare a set of messages for the verifier and if things go poorly they
restart the verifier and try again until they are successful. It turns out a simu-
lator can do more with a verifier V ∗ that they have running. They can actually
snapshot a verifier V ∗ at any particular point and restore to that state. There
isn’t any special about restoring to the initial state. The simulator just needs to
remember the state, tape head positions, and tape contents. However, it isn’t
clear that when V ∗ is reset to this state we can provide new randomness to
the verifier. We might be able to detect how much of their randomness string
they’ve read and replace randomness after that. However, V ∗ may read all of
its randomness as its first action. In general, we shouldn’t count on being able
to randomize V ∗ as a success strategy. We need to randomize “ourself” as the
simulator.

To fix the protocol above consider that answering V ∗’s queries is easy once
they are known. If we could have V ∗ tell us the edges before we commitment
then things would be easy. Reordering these two messages is however a bad idea

2

because then a malicious prover could prove false statements breaking sound-
ness.

What we’d like is a way for the simulator to know what edges will be opened
by the simulator without a prover knowing what messages are coming. This
seems impossible as a prover has unlimited resources and a simulator must run
in polynomial time. We need to rely on the ability of the simulator to “rewind”
the verifier which the prover can’t do.

The intuition behind the protocol is as follows. We ignore the parallel repeti-
tion for the moment that is only important when analyzing success probability.

1. The prover inputs G, π.

2. The prover samples ck ← Setup(1|x|).

3. The verifier samples ck′ ← Setup(1|x|).

4. The verifier selects edge u, v and computes (c, d) ← Commit(u, v) and
sends c to the prover as well as ck′.

5. The prover selects random ψ : {0, 1, 2} → {0, 1, 2} and computes φ = ψ◦π.

6. For each vertex u ∈ V , P creates (cu, du)← Commit(φi(u)) and sends cu
to the verifier (as well as ck).

7. V sends d to P (opening the edge u, v).

8. P checks the validity of the commitment and if valid sends du and dv to
V .

9. The verifier computes uc ← Open(cu, du), vc ← Open(cv, dv) and accepts
iff uc 6= vc for all received edges.

Note that as written this is a 4-round protocol: 1) commitment from verifier
2) commitment from prover 3) open from verifier and 4) open from prover. The
idea here is that the prover shouldn’t know what is contained in the commitment
of the prover and thus the protocol doesn’t not change for the prover.

However, the simulator now has the following strategy:

1. they get V ∗ to commit to the edges to be opened,

2. they commit to a random coloring (or whatever),

3. get V ∗ to open the committed edges.

4. Rewind V ∗ to after its commitments have been sent.

5. Produce a random coloring subject to the edge that V ∗ will request being
correct.

6. Run V ∗ to completion.

Discussion Question 10: In the above protocol both parties use the same
commitment scheme that is perfectly binding and computationally hiding. Why
is this a problem?

3

Discussion Question 11: Right now both parties generate the key for
“their” commitment. Using the Pederson based and encryption based commit-
ments we introduced, what is a better strategy?

Discussion Question 12: The intuition behind this simulation is that V ∗

should only be able to produce one opening to their commitment and thus S can
properly prepare. However, V ∗ could simply abort the protocol. What should
S do in this case?

References

[GK96] Oded Goldreich and Ariel Kahan. How to construct constant-round
zero-knowledge proof systems for np. Journal of Cryptology, 9(3):167–
189, 1996.

4

