
CSE 5854: Class 04

Benjamin Fuller

January 25, 2018

1 Building Useful Zero-knowledge

In this reading we will focus on making zero knowledge more useful. Our final
goal will be to design zero-knowledge system for all of NP . Recall that we know
how to amplify the soundness and completeness of an interactive proof system
by sequential repetition. However, it is unclear that this sequential repetition
preserves zero-knowledge. Indeed as you see on the problem set sequential
composition does not hold if we do not allow the prover and verifier to have
access to auxiliary input.

Before we start with these technical results its important to remember why
we are defining zero knowledge proofs. The core is that they allow us to enforce
honest behavior in a protocol. Suppose that we have two players P1 and P2

engaging in an interactive protocol. Suppose that P1 is sending a message c to
P2. Along with c we have the players engage in an interactive proof that says
c would be the next message sent by a player honestly executing the protocol
agreed upon by P1 and P2.1 This language is in NP as P1 could simply show
its private information and P2 could recompute what the next message should
be. The important piece is do have this proof be zero-knowledge. If we can
achieve this goal we can turn to designing protocols that protect against passive
adversaries and then augment them with the appropriate zero-knowledge proofs.

Theorem 1. Let P be an interactive machine that is zero-knowledge with re-
spect to auxiliary input on a language L. Let q be some polynomial and let Pq be
an interactive machine that on common input x proceeds in q(|x|) phases each of
them running an independent copy of P on input x. Then Pq is zero-knowledge
with respective to auxiliary input.

Furthermore if P is perfect zero-knowledge so is Pq.

Proof. Our goal is to construct a simulator Sq for any malicious verifier V ∗q for
the sequentially composed protocol. Recall that we know how to simulate a
single interaction for any malicious verifier V ∗. Our proof will use the view
definition of a simulator. Recall we showed that if a simulator can produce
messages computationally indistinguishable from the messages expected by the
verifier then the output of the verifier must be computationally indistinguish-
able. Our composed simulator will do the only thing it knows how to do, it will

1There are some subtle issues to deal with here, most pressing is what to do when the
parties are supposed to be using randomness. Its not enough to say that the message c would
be sent for some random string. You want to guarantee that the party actually sampled a
random string.

1

separately simulate each phase of the protocol. That is, it will independently
interact with V ∗q in each round of the protocol.

As a small technical detail we need to partition the malicious verifier V ∗q .
We will think of V ∗q outputting everything it has seen at the end of each round,
passing this information to the next round of the verifier and then engaging
with the prover again. In this way we can think of V ∗q as q separate machines.
That is we define V ∗0 ,, Vq−1 as follows:

1. The machine V ∗0 takes an auxiliary input z the auxiliary input of V ∗q and
executes the first round of interaction with P . It then outputs its entire
view as z1.

2. The machine V ∗i takes an input zi and initializes V ∗q running it through
i+ 1 rounds of the protocol giving it messages from zi as appropriate and
feeding the random tape from zi. Once V ∗q has engaged in i+ 1 “rounds”
of interaction then V ∗i engages with the real prover. Upon termination,
the view is appended to zi and output as zi+1.

Note that each V ∗i is a polynomial time interactive Turing machine that
interacts with P . Thus it follows that there exists a simulator Si for each of
these machines such that,

|Pr[D(x, z,< P, V ∗i (z) > (x)) = 1]− Pr[D(x, z, Si(x, z)) = 1] < ngl(|x|).

The full simulator S simply calls each Si in order creating the new auxiliary
input as the output of the previous phase.

Showing that this composed simulator works is a hybrid argument from the
fact that each stage is a good simulation.

Note: This is a much denser proof that it looks at first glance. Make sure
you read this proof multiple times and each claim that is being made. Is it really
possible to separate the simulator V ∗q as described? Is it possible to strengthen
this separation?

Discussion Question 7: Where was auxiliary input crucial in this defini-
tion? What fails without auxiliary input?

1.1 ZK for all of NP

Now that we’ve shown that sequential composition is possible for zero-knowledge
we’ll show it is possible to build a zero-knowledge (ZK) proof system for all
of NP. This will allow us to enforce honest behavior in interactive protocols.
Importantly from this point forward we’ll assume that the prover has a witness
as input and construct protocols where P runs in polynomial time. This will
be crucial for actually using ZK in protocols. We’ll discuss later how a prover
gets access to a witness. Rather than showing an ZK proof system for all of NP
we’ll show an ZK system for an NP-complete. Sticking with our theme of graph
problems we will show that 3-colorability has a zero knowledge proof system.

Definition 1. Let G = (V,E) be a graph. The graph G is said to be 3-colorable
if there exists a permutation π : E → {0, 1, 2} such that whenever u, v ∈ E,
π(u) 6= π(v). The graph G is not 3-colorable if no such permutation exists.
Define the language L as the set of all 3-colorable graphs.

2

Theorem 2. Assuming the existence of (information-theoretically binding) com-
mitment schemes (Setup,Commit,Open), there exists a zero-knowledge (auxil-
iary input) interactive proof system (P, V) for L (3-colorability). Furthermore,
when P is given a three-coloring π as input P runs in polynomial time.

Proof. We begin by describing the code for P and V . Recall that P has auxiliary
input π that is a 3-coloring of the graph G.

1. The prover inputs G, π.

2. The prover samples ck ← Setup(1|x|). The prover selects a random ψ :
{0, 1, 2} → {0, 1, 2} and computes φ = ψ ◦ π.

3. For each vertex u ∈ V , P creates (cu, du) ← Commit(φ(u)) and sends cu
to the verifier.

4. The verifier randomly selects some edge u, v and sends this edge to P .

5. The prover receives some edge u, v and sends du and dv to V .

6. The verifier computes (a, b)← Open(cu, du and accepts iff a 6= b for both
received edges.

Discussion Question 8: Why should the commitment binding be information-
theoretic?

Discussion Question 9: Provide a sketch of how the simulator should
prepare its first message to an arbitrary verifier V ∗.

3

