
CSE 5854: Class 02

Benjamin Fuller

January 17, 2018

1 Building Commitments

In the previous set of notes we defined two properties for a commitment scheme:
hiding and binding. In this class we’ll turn to constructing commitments and
talk about strengthening the definition.

We start by a natural question, can a commitment scheme be built out of an
encryption scheme? Certainly, the hiding property is exactly the definition of
a secure public key encryption scheme, namely that the encryption of any two
messages is computationally indistinguishable.

We’ll now consider the binding property. For the moment, we will assume
that the pair of public and secret key (pk, sk) is held by the receiver R. (This
doesn’t make sense as this would violate the hiding property, we’ll start from
here.) Then the open protocol would simply be to decrypt the message. In order
for the encryption scheme to be binding we need that the encryption scheme
always decrypts properly. That is,

Pr[Decsk(Encpk(m)) = 1] = 1.

Such a property prevents there from being two secret keys sk1, sk2 such that for
some message m Decsk1(Encpk(m)) 6= Decsk2(Encpk(m)).

Discussion Question 1: Why does perfect correctness ensure that two
private keys will decrypt the same?

We now consider the question of who stores the secret key sk? It seems
important for the receiver to have the public key pk. For opening it seems
important for the sender to have sk. However, if the sender generates sk then
the receiver has to worry about the public key being honestly generated. That is,
we can guarantee binding for public keys generating properly, but what we can
say for arbitrary public keys? For example, if we are using a Diffie-Hellman type
construction we need to consider whether they have actually sent a generator
of the group. For the moment, we will ignore this problem and assume that
the public key is output by a trusted one-time process. Let (G,Enc,Dec) be a
public key encryption scheme. Then we can have the following scheme:

1. Let Setup(1k) output ck = pk where (pk, sk)← G(1k).

2. Let (c, (m; r)) ← Commit(m; r) where r is chosen at random and c =
Encpk(m; r).

3. Let m̃ ← Open(c, (m; r)) where m̃ = m if c = Encpk(m; r) and m̃ =⊥
otherwise.

1



Note here we are making the randomness used in algorithms explicit and
it appears following a semicolon in the inputs to the algorithm. Note that the
secret key and the decryption algorithm are never used. However, the fact that
the encryption scheme is committing is crucial in proving security here.

Discussion Question 2: How would this scheme work with El Gamal
encryption?

1.1 Commitment using a pseudorandom generator

We’ll now define a commitment scheme that only relies on a pseudorandom
generator. Consider some G : {0, 1}k → {0, 1}3k that is a PRG. Define a
commitment scheme (Setup,Commit,Open) as follows:

1. r ← Setup(1k) where r ← {0, 1}3k.

2. (c, (s, b)) ← Commit(b), where s ← {0, 1}k and c = G(s) ⊕ r if b = 1 and
c = G(s) otherwise.

3. m̃ ← Open(c, (s, b)), where m̃ = b if c = G(s) output b = 0 and if c =
G(s)⊕ r set b = 1.

Theorem 1. If G is a pseudorandom generator then the commitment scheme
above is computationally hiding and statistically binding.

Proof. We first consider hiding. It suffices to show for any fixed r ∈ {0, 1}3k
the distributions G(S) and G(S)⊕ r are computationally indistinguishable. We
have the following:

G(S) ≈c U3k
d
= U3k ⊕ r ≈c G(S)⊕ r.

Where the first and third equalities proceed by security of the pseudorandom
generator and the second inequality proceeds because a random string offset by
any fixed value is distributed the same as a random string.

We now consider binding. The only way for a malicious sender to cheat in
the opening phase is to send a string y such that there exists s1, s2 ∈ {0, 1}k
such that G(s1) = y = G(s2)⊕ r. We now ask how frequently this is possible.1

We assume the adversary can cheat if they can find s1, s2 such that z = G(s1)⊕
G(s2). Since there are at most 2k values for each term in this sum there are at
most 22k values for z. There are 23k values for r so a randomly chosen r there
will exist such s1, s2 with probability at most 2−k. Thus with overwhelming
probability a malicious sender cannot find such s1, s2 (because they don’t exist).
Thus, with overwhelming probability the scheme is binding.

1.2 Pedersen Commitment

In this subsection we consider a second commitment scheme based on the hard-
ness of discrete logarithm (our first example was adapting the El Gamal en-
cryption scheme to be a commitment). This scheme appears similar to an
encryption scheme but it has very different properties. This scheme is due to
Pedersen [Ped91].

Define the scheme C = (Setup,Commit,Open) as follows:

1This argument does not consider the computational power of the malicious sender.

2



1. (p, g, y) ← Setup(1k) where p is a prime, y is a randomly chosen element
of Z∗p and g is a randomly chosen generator of Z∗p.

2. (c, (r, b))← Commit(b) where r
$← Z∗p and c = gryb mod p.

3. m̃← Open(c, (r, b)), where m̃ = b if c = gryb and m̃ =⊥ otherwise.

This type of commitment is different from what we’ve seen before. It is
information-theoretically hiding that is, even an all powerful malicious receiver
can’t learn anything about the bit b. However, it is (only) computationally
hiding under the discrete log assumption. On the first homework you’ll be
asked to prove security of this scheme.

2 Composing Commitment

Previously, we saw that it is possible to build a multi bit encryption scheme by
individually encrypting each message. This does not work for signature schemes
as the attacker can reorder the message and change the meaning. Because we
do not consider an attacker receiver (yet) composition works for commitment
schemes.

Lemma 1. If C = (Setup,Commit,Open) is a secure commitment scheme for
{0, 1}, then C′ obtained from C from bit by bit composition for any polynomial
p(k) times is a secure commitment scheme for {0, 1}p(k). In particular, any
commitment scheme can be used to commit and open multiple messages.

Proof Sketch. The proof that C′ satisfies hiding is the same as for encryption, we
use the hybrid argument and the fact that a malicious receiver can run Commit
on any values they wish. The binding property is also a natural hybrid argument,
if the sender can find d0, d1 such that m0 = Open(c, d0),m1 = Open(c, d1) then
the messages m0,m1 must differ in some bit and we can use the part of the
opening string as a break for the single bit decommitment scheme.

3 Interactive Proofs

We now are going to change directions in what seems like a significant way, we
will consider interactive proofs. Consider some language L. In the computer
science realm, a proof is a way of demonstrating if x ∈ L. Take the setting of
NP then we know that x ∈ L if and only if there exists a computable relation
R(·, ·) such that ∃w where R(x,w) = 1 if and only if x ∈ L.

The most basic interactive proof between a prover and a verifier is as follows:

1. Assume both parties agree on the language L, the relation R, and the
statement x.

2. Further assume that the prover knows some w such that R(x,w) = 1.

3. The prover can “prove” to the sender by simply transmitting the value w.

3



This type of proof is elementary, we are simply writing down a proof that the
verifier is able to then use to check membership. There is nothing special about
the fact that P and V are interacting. In this class we’ll see two types of proofs:
proofs were the verifier is not able to check membership of the statement on
their own and proofs where the prover convinces the verifier that something is
true without revealing the entire truth of the statement (i.e. the entire witness).

Like commitments, we want two security properties from interactive proof,
they are soundness and completeness. Roughly, soundness says that the prover
should not be able to convince the verifier if x 6∈ L and completeness says that
the prover should be able to convince the verifier if x ∈ L. For these definitions
we need notions of interactive Turing machines as we may have many messages
going back and forth. Full specification of an interactive Turing machine is out
of the scope of this class [Weg97]. We will add details as we progress.

Definition 1 (Interactive Proof System). A pair of interactive machines (P, V )
is called an interactive proof system for a language L if machine V is polynomial
time and the following conditions hold:

• Completeness: For every x ∈ L,

Pr[< P, V > (x) = 1] ≥ 2/3.

• Soundness: For every x 6∈ L and every interactive machine B,

Pr[< B, V > (x) = 1] ≤ 1/3.

.

Here the symbols < P, V > (x) correspond to the complete interaction
between machines P and V when both initialized with x. We say the interaction
outputs 1 if the verifier V outputs 1 at the end of the process. We will often
use the term V iew to refer to the complete set of messages that pass between
P and V .

3.1 Graph Non-Isomorphism

In this section we will show an example of an interactive proof for a language
that is not known to know in BPP or NP . Thus, it is not possible for the
verifier to compute membership or their own or for the prover to simply send
a witness. The example we will use is that of graph non-isomorphism. Define
two graphs G0 = (V0, E0) and G1 = (V1, E1) where each edge is between two
vertices in the graph. We say that two graphs are isomorphic if there exists an
isomorphism π : V0 → V1 such that for every edge u, v ∈ E0 π(u), π(v) ∈ E1.
We say that two graphs are non-isomorphic if no such isomorphism exists. No
polynomial time solution for solving graph isomorphism is known. However,
with an unbounded prover it is possible to convince a verifier that two graphs
are not isomorphic. For convenience we assume that the sets V0 = V1 (why is
it okay to make this assumption?). The protocol works as follows:

1. The verifier picks a random b ∈ {0, 1} and a random isomorphism π :
Vb → V1−b. The verifier computes a graph G2 = (π(Vb), π(Eb)) and sends
G2 to P .

4



2. The prover P receives a graph G2. P computes 2 isomorphisms π and ν
between G0 and G1 to G2 respectively. If both π and ν exist, the prover
picks a random b′ and sends this to the verifier. If only π exists P sends
b′ = 0 if only ν exists P sends b′ = 1 to V .

Discussion Question: How frequently is the prover going to be right when
the graphs are isomorphic? When they aren’t isomorphic? If a prover B decides
to cheat what can they do to effect success probability?

References

[Ped91] Torben P Pedersen. Non-interactive and information-theoretic se-
cure verifiable secret sharing. In Crypto, volume 91, pages 129–140.
Springer, 1991.

[Weg97] Peter Wegner. Why interaction is more powerful than algorithms.
Communications of the ACM, 40(5):80–91, 1997.

5


