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1 Last Class

Last class we talked about some concepts from modular arithmetic. We defined
two groups that will be important for the rest of the class Z,, (with the addition
operation) and Z; (with the multiplication operation). We then showed that
a-c+b mod pis a good strongly universal hash function.

Finally, we concluded by talking about what changes need to be made to
our definition in order to overcome the barriers of the one-time pad. We came
up with two changes:

1. We need to allow the adversary to have non zero probability of success.

2. We need to restrict to adversaries that run in a reasonable amount of time.
For example, they shouldn’t be able to exhaust the key space.

2 Defining computational security

In this class we will begin to define what it means for computational security. At
the beginning of the class we talked about who we want our encryption schemes
to be “private” against, this list included major governments. Lets list some
things that we may want to provide security against:

e The set of all C programs that run in less than a year
e The set of all programs runnable in memory held by my computer
e The set of all programs computable in EC2.

e The set of all programs computable by an alien race that is really good at
running programs.

e The set of all programs runnable before the heat death of the universe.

How do we have a good sense of these things? Even the top most thing on
this list is difficult to judge. How can we tell a priori how long a program is
going to run? We can’t this is an undecidable problem. (Who remembers what
an undecidable problem is?)



2.1 What is our goal?

With the set of programs together we are trying to simultaneously achieve too
goals, we want out scheme to be secure against all current attackers and don’t
want future technologies or algorithms to be able to obviate our system. Ideally,
we could provide the second thing unconditionally that the problem is just hard
for computers, but that is unlikely given our current understanding of computer
science.

Two approaches to this problem: 1) concrete and 2) asymptotic. These two
approaches attempt to balance the goals described above.

Concrete Security In the concrete approach we attempt to bound the max-
imal success probability of an adversary running in a particular time ¢. That is,
we show that the scheme is (¢, €)-secure. Not that this automatically provides
security for all adversaries that run in time ¢’ < ¢t. However, it says absolutely
nothing about what happens for a ¢’ > t. (We can show some weak bounds
that slightly increasing ¢’ does not help too much but morally this statement is
correct.)

Suppose we have a private key encryption scheme with ¢ = 250 and € =
2760 Standard desktop machines can execute approximately 10'© operations
per second or 233. This would require 23° seconds to gain an advantage of 276°.
This value is 34 years which seems safe. However, super computers are able to
compute approximately 10'® operations a second or 2°3. This computer would
require only 128 seconds to break this scheme or approximately 2 minutes.

If instead we take ¢ = 230, then the super computer would take 227 seconds
or 4 years. However, this assumes that computing techniques stay constant
throughout this period. Moore’s law says that semiconductor density doubles
every 18 months. This has traditionally lead to a comparable increase in com-
puting power (which started as an increase in processor speed and has now
moved to an increase in parallelism).

For truly sensitive data having it remain private for 4 years may not be
sufficient. This may lead to us being conservative and building a scheme secure
against t = 228, There’s been 2°® seconds since the big bang. Notice however
that 2790 did not appear in any of these calculations. This is our probability
of failure. If failure occurs once ever 2730 seconds that is once every 100 years.
Once every 2790 seconds is once every 100 billion years.

Concrete security is very useful in practice. This is often what you want to
know when deploying a scheme. However it is difficult to get a hold on. How do
we measure the best attacks against the algorithm? How do we get an accurate
understanding of the best computing technology? What kind of attacker are
assuming? What about advances in computing technology? (Consider quantum
computing.)

Asymptotic Security Any real deployment of a crypto protocol must use
concrete security. It is important to tell adopters the best estimate for how long
it will take to break the protocol based on the designers best understanding of
the state of the art in computing.

A more relaxed approach is to say that as computing advances we have an
algorithm that will work. So when the best computing can do 23° operations a
second we use one algorithm, when the best computing can do 240 operations



a second we use a second algorithm and so on. The idea is that we should be

able to select a new algorithm based on our understanding of current computing

power. When it becomes time to actually deploy this algorithm we will select the

right algorithm based on our current understanding of computing technology.
The approach proceeds as follows:

1. Rather than constructing a single algorithm, all of our algorithms take
in a parameter n called the security parameter. This parameter specifies
which algorithm should be used. Notionally as n increases the algorithm
should be secure against adversaries running in longer time.

2. Rather than measuring adversary success as a single number we consider
it as a function of n. Does the adversary become more successful as n
increases? Less? This makes both € and ¢ become functions of n.

3. We say the system is secure if when A’s running time is less than ¢(n)
their success probability is at most e(n).

The natural question becomes what is the right bound to seek for ¢(n) and
€(n). In the majority of cryptography we do the following (though I am not
arguing this is the right approach):

1. Assume the adversary is a probabilistic Turing machine. That is, it is able
to flip random coins but is not obliged to do so.

2. Consider security when the adversary runs in time polynomial in the se-
curity parameter. Note that this definition does not make sense in the
concrete security setting, there’s no such thing as a polynomial unless our
running time is a function of something.

3. Argue that the adversary’s success probability is smaller than any poly-
nomial in the security parameter. Specifically we say that the adversary’s
advantage must be negligible (as defined below).

Definition 1. A function p : Z+ — R™T is a polynomial (bounded) function if
there exists k, N € Z*t such that for all n > N if holds that p(n) < nk.12

Definition 2. A function f : ZT — RT is negligible function if for every
positive polynomial p there is an N such that for all integers n > N it holds
that f(n) < 1/p(n).

What can a Turing Machine do? In this class we won’t require the formal
description of how a Turing machine or what computing power it has. Just as a
quick reminder a Turing machine is a set of states along with a single tape that
grows in a single direction. You can alternatively think of an computation that
can be effectively performed on in your favorite programming language. The
formalism of a Turing machine will not be important for most of the class.

1Here we are talking about a function that is bounded by a polynomial not an actual
polynomial. For example p(n) = sin(n) would satisfy our definition but this function is not a
polynomial. For the purposes of this problem set we are concerned with polynomial time. In
this setting, we care that the function is bounded above by a polynomial. That is what this
definition guarantees.

2This definition is equivalent to saying that p(n) < cn® for some constant ¢ > 0. The
constant ¢ can be avoided by increasing k, so we remove it to simplify notation.



2.2 Modifying Shannon secrecy

Definition 3 (Shannon Secrecy). An encryption scheme (M, K, Enc, Dec) sat-
isfies Shannon secrecy if for every two messages mi,ms € M and for every
ciphertext c:

[Enci(my) =] = [Encg(ma) = cl.

Pr Pr
keK keK
This definition is significantly easier to modify.

Definition 4 (Indistinguishable). An encryption scheme (M, K, Enc, Dec) has
indistinguishable encryptions if for all A for every two messages my,ma € M
and for every ciphertext c:

Pr [A(Enc =1] — Pr [A(Enc =1l <e.
| Br [A(Enci(ma)) = 1] = Pr [A(Ency(mz)) = 1]| <e

Why is it important that A outputs 1 and not my or mo? This is because
this guarantee should hold for all pairs of messages which are defined after the
adversary. By limiting ourselves to an adversary that outputs two values we
can effectively argue that they perform the same on the two messages.
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