1 Working with computational security

Recall the following definitions.

Definition 1. A function \(p : \mathbb{Z}^+ \rightarrow \mathbb{R}^+ \) is a polynomial (bounded) function if there exists \(k, N \in \mathbb{Z}^+ \) such that for all \(n > N \) it holds that \(p(n) \leq n^k \).\(^1\)

Definition 2. A function \(f : \mathbb{Z}^+ \rightarrow \mathbb{R}^+ \) is negligible function if for every positive polynomial \(p \) there is an \(N \) such that for all integers \(n > N \) it holds that \(f(n) < \frac{1}{p(n)} \).\(^2\)

a) 10 pts Show that the product, \(p \cdot q \) of two polynomial functions \(p, q \) is a polynomial function. (Your response should consider the \(N_p, N_q \) where this becomes true for each function \(p, q \).)

b) 10 pts Show that the sum, \(p + q \) of two polynomial functions, \(p, q \) is a polynomial function. (Your response should consider the \(N_p, N_q \) where this becomes true for each function \(p, q \).)

c) 10 pts Show that for any polynomial function \(p(n) \) and negligible function \(\epsilon(n) \) the function \(p(n)\epsilon(n) \) is a negligible function. (Your response should consider the \(N_p, N_{\epsilon} \) for each function.)

d) 10 pts Show that the sum, \((\epsilon + \nu)(n) \), of two negligible functions, \(\epsilon(n), \nu(n) \) is negligible. (Your response should consider the \(N_\epsilon, N_\nu \) where this becomes true for each polynomial \(p \).)

e) 10 pts Consider a PPT \(A \) that makes invokes another PPT \(A' \) as a sub-routine.\(^3\) Show that the overall running time of \(A \) is polynomial time (even counting the running time \(A' \)). In this question \(A \) may make multiple calls to \(A' \).

Hint: What is the maximum number of times that \(A \) can invoke \(A' \)? You may use your answers from any previous part.

\(^1\)Here we are talking about a function that is bounded by a polynomial not an actual polynomial. For example \(p(n) = \sin(n) \) would satisfy our definition but this function is not a polynomial. For the purposes of this problem set we are concerned with polynomial time. In this setting, we care that the function is bounded above by a polynomial. That is what this definition guarantees.

\(^2\)This definition is equivalent to saying that \(p(n) \leq cn^k \) for some constant \(c > 0 \). The constant \(c \) can be avoided by increasing \(k \), so we remove it to simplify notation.

\(^3\)We did not explicitly define this behavior but you can think of this as a function call in a program language.
2 Computational Definitions of Security

Recall our definition of indistinguishable encryptions:

Definition 3 (Indistinguishable). An encryption scheme \((\mathcal{M}, K, \text{Enc}, \text{Dec})\) has indistinguishable encryptions if for all PPT \(A\) for every two messages \(m_1, m_2 \in \mathcal{M}\):

\[
| \Pr_{k \in K} [A(\text{Enc}_k(m_1)) = 1] - \Pr_{k \in K} [A(\text{Enc}_k(m_2)) = 1] | < \epsilon(n).
\]

for some negligible function \(\epsilon(n)\).

Consider the following alternative definition:

Definition 4 (Indistinguishable). An encryption scheme \((\mathcal{M}, K, \text{Enc}, \text{Dec})\) has IND encryptions if for all PPT \(A\) for every two messages \(m_1, m_2 \in \mathcal{M}\):

\[
\Pr_{k \in K, b \leftarrow \{1, 2\}} [A(\text{Enc}_k(m_b)) = b] \leq \frac{1}{2} + \epsilon(n).
\]

for some negligible function \(\epsilon(n)\).

a) (10 pts) Describe in words how the two definitions are different.

b) (20 pts) Show Definitions 3 and 4 are equivalent (show both directions of the implication).\(^3\) Also show the relationship between the two negligible functions.

c) (10 pts) In class we showed a version of semantic security for multiple messages. Present a definition of indistinguishable encryptions for multiple messages.

d) (10 pts) Does an encryption scheme with indistinguishable encryptions for a single message have indistinguishable encryptions for multiple messages? If yes, provide a proof, if not provide a counterexample.

\(^3\)You may want to refer to proof in class on the equivalence of semantic security and indistinguishable encryptions.