CSE 5852: Problem Set 8

Due: November 28, 2016

In this assignment you'll be doing be working with composite moduli and considering security definitions for signatures.

1 The group \mathbb{Z}_n^*

Assume that p = 5, q = 7 and N = pq = 35.

- 1. 5 pts How many elements are in \mathbb{Z}_N^* ?
- 2. 15 pts What are the elements of \mathbb{Z}_N^* ?
- 3. 10 pts For each element of \mathbb{Z}_N^* what is its inverse? Hint: I recommend putting this question and the previous one in a large table.

2 The RSA problem

As in the previous problem consider the setting where p = 5, q = 7 and N = pq = 35.

- 1. 5 pts What is $\phi(N)$?
- 2. 15 pts Recall the RSA problem requires finding an e > 1 such that $gcd(e, \phi(N)) = 1$. How many possible values for e are there between 2 and $\phi(N)$? What are they?
- 3. **5 pts** Compute *d* for each possible *e*. Recall that *d* is *e*'s inverse mod $\phi(N)$.
- 4. 15 pts For one e, d pair show the computation using the extended Euclid algorithm for computing the gcd. This algorithm is below. Remember if your output is negative you need to add $\phi(N)$ to make sure its between 1 and $\phi(N)$. I recommend using a table of the following form:

α	β	r	α_2	β_2	r_2	t
0	1	е	1	0	$\phi(N)$	

The extended Euclidean algorithm takes input gcd(a, b) and outputs α, β, z such that $a\alpha+b\beta=z$ and z=gcd(a,b). This algorithm runs in polynomial time in the size of the inputs.

Extended Euclidean Algorithm

- (a) Input a, b.
- (b) Set $\alpha = 0, \beta = 1, r = b$.
- (c) Set $\alpha_2 = 1, \beta_2 = 0, r_2 = a$.
- (d) While $r \neq 0$: i. $t = r_2/r$. ii. $(r_2, r) = (r, r_2 - t \cdot r)$. iii. $(\alpha_2, \alpha) = (\alpha, \alpha_2 - t \cdot \alpha)$. iv. $(\beta_2, \beta) = (\beta, \beta_2 - t \cdot \beta)$.
- (e) Output (α_2, β_2, r_2) .

3 Definitions of Signatures

In class we presented the following signature definition called existentially unforgeable under chosen message attack.

- $EU CMA_{Gen,Sig,Vfy,\mathcal{A}}(1^n)$:
- 1. Run $(vk, sk) \leftarrow \mathsf{Gen}(1^n)$.
- 2. Give vk to \mathcal{A} .
- 3. For i = 1 to k: Receive m_i from \mathcal{A} .

Provide σ_i to \mathcal{A} .

- 4. Receive m', σ' from \mathcal{A} .
- 5. Output 1 if and only if $Vfy(vk, m', \sigma') = 1$.

Definition 1. A signature scheme (Gen, Sig, Vfy) is existentially unforgeable under chosen message attack if for all PPT \mathcal{A} there exists a negligible $\epsilon(n)$ such that

$$\Pr[\mathsf{EU} - \mathsf{CMA}_{\mathsf{Gen},\mathsf{Sig}},\mathsf{Vfy}_{\mathcal{A}}(1^n) = 1] < \epsilon(n).$$

Consider the setting where the sender signs only random messages. We will still consider a forgery if the adversary is able to produce a signature on an arbitrary message. We will call this setting **existentially-unforgeable under random message attack** or EU-RMA.

- 1. 10 pts Provide an experiment and definition for EU-RMA.
- 2. 20 pts Show that EU-CMA security implies EU-RMA security. That is show that if there exists a PPT \mathcal{A} that forges in the EU-RMA game with probability 1/p(n) for some polynomial p(n) there there is a PPT \mathcal{A}' that forges in the EU-CMA game with an inverse polynomial probability. Explicitly describe the behavior of \mathcal{A}' and how it uses \mathcal{A} .