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1 Last Class

Last class we introduce the concept of computational security. In cryptogra-
phy we have two types of security:

1. Concrete security: measures the security of protocols against current
attacks and tries to predict how long an adversary will take to break
the system. These numbers are very hard to obtain for a new protocol
and should be judged conservatively.

2. Asymptotic security: considers a sequence of protocols and asks that
the adversary gets work at breaking the protocols as the sequence pro-
ceeds (even with additional resources). The standard here is that when
the adversary is given time that is a polynomial function of the se-
quence position their success in breaking the protocol should shrink
faster than any inverse polynomial function.

1



2 Indistinguishable Encryption

Definition 1 (Indistinguishable). An encryption scheme (M, K,Enc,Dec)
has indistinguishable encryptions if for all A for every two messages m1,m2 ∈
M and for every ciphertext c:

| Pr
k∈K

[A(Enck(m1)) = 1]− Pr
k∈K

[A(Enck(m2)) = 1]| < ε.

In the Information-theoretic world, instead of 1, we had m1 and m2. The
reason of not having m1 and m2 is to get rid of dependencies the adversary
put on the messages.

The translation from Shannon secrecy to indistinguishable encryptions
was fairly straightforward. We’ll see that it is more complicated to translate
Perfect secrecy. We’ll make several attempts at a good definition.

Moving from Perfect secrecy to computational world

We first recall the definition of Perfect Secrecy

Definition 2. Enc. satisfies Perfect Secrecy if for any m and message dis-
tribution M , Pr[M = m|Enc(K,M) = c] = Pr[M = m].

The first thing we need to do is add error (we showed in the previous
class the attacker can always have some success. So this looks like:

Definition 3. Enc. satisfies Perfect Secrecy if for any m and message dis-
tribution M ,

|Pr[M = m|Enc(K,M) = c]− Pr[M = m]| < ε.

3 An attacker trying to predict that message

We now need to introduce the concept of a machine predicting (instead of
just being based on the probability). Let’s take a first attempt:

Definition 4. Let M be a message space. Let K be a distribution. Enc is
secure if for all probabilistic polynomial time Turing machines A or PPT A
if for any message distribution M over M,

Pr[A(C) = m]− Pr[M = m]| < ε.
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This message distribution might be very complex. Even if we remove
the ciphertext the adversary might not be able to output messages m with
the correct probability (what if it takes exponential time to sample from
M?). So the adversary might not be able to do this just because the message
distribution is complex, not because the ciphertext is hiding anything.

Some notes:

1. It might not be possible to come up with message distribution, and
makes this impossible to satisfy.

2. Haven’t explicitly hidden all functions of message just the ability to
predict the message. In the information-theoretic setting since the
probability didn’t change at all this implicitly hid all functions of the
message.

3. We need to incorporate the attacker having some knowledge of the
message distribution.

Attempt 2 Notice that we are now implicitly considering a sequence of
encryption schemes, lets make this a little bit more formal. Define an en-
cryption scheme that takes in security parameter. Notice this definition only
talks about computing the message itself. What if some sensitive function
of the message is revealed? Is this prohibited? Recall that we wanted to
protect every part of the message. Notionally we want this to be true for
every function of the message. Lets take a second attempt.

Definition 5. Let M be a message space, K be a distribution. Enc is secure
if for all f : M → {0, 1}∗ and for all PPT A for any message distribution
M over M and for all t

Pr[A(C) = t)]− Pr[f(M) = t]| < ε.

This definition addresses issue 2 above. Lets consider some possible func-
tions f :

1. The identity function.

2. A bit of the message.

3. The sum of some bits of the message.

4. An encryption of m under some message.
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Attempt 3 In the case of perfect secrecy we could explain a priori mes-
sage information as a new message distribution. However, in the computa-
tional setting, (even if we define a new adversary for each message distribu-
tion) its not clear they can efficiently make use of this information. We need
to formally include this information.

Definition 6. Let M be a message space. Let K be a distribution. Enc is
secure if for all f : M → {0, 1}∗ and for all PPT A if for any message
distribution M over M and for any h :M→ {0, 1}∗, and for all t

Pr[A(C, h(M)) = t)]− Pr[f(M |h(M)) = t]| < ε.

However we still have the issue that it might not be possible for the at-
tacker to even create the output distribution of f (what if f takes exponential
time to compute?)

Attempt 4 Informally, we want that the probability that the attacker
guesses the function’s value given the ciphertext = probability that the at-
tacker guesses the function’s value without given the ciphertext

Definition 7. Let M be a message space. Let K be a distribution. Enc is
secure if for all f :M→ {0, 1}∗ and for all PPT A there exists PPT A′ if
for any message distribution M over M and for any h :M→ {0, 1}∗,

Pr[A(C, h(M)) = f(M))]− Pr[A′(h(M)) = f(M)]| < ε.

The second attacker A′ is called a simulator since it is trying to recreate
A’s attack without the ciphertext. The formal definition used is slightly
different than this

Definition 8 (Semantic Security). [GM84] Let M be a message space. Let
K be a distribution. Enc is semantically-secure if for all PPT A there exists
a simulator A′ such that for any message distribution M over M and for
any f, h :M→ {0, 1}∗,

Pr[A(C, h(M)) = f(M))]− Pr[A′(h(M)) = f(M)]| < ε.

We’ll show in the next class that an encryption scheme has indistinguish-
able encryptions if and only if it satisfies semantic security.

Theorem 1. Indistinguishable Encryptions is equivalent to Semantic Secu-
rity
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As a preview we will need to work with Turing machines here. We’ll show
that an attacker that breaks one definition can be used to break the other
definition. This is called a reduction. Most of our proofs will proceed using
either contradiction or the contrapositive. To prove the theorem, we need
two things to prove, I.E → S.S. and S.S.→ I.E.
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