CSE 5852: Lecture 4

Chao Shang
September 12, 2016

1 Review of Last Class

The last class covered some background in probability theory and introduced
the secrecy of a channel. We have learned the definition of perfect secrecy and
Shannon secrecy. Today we will finish discussing the secrecy of channel and
the one-time pad. We will then begin discussing active attackers and message
authentication codes (MACs).

2 Secrecy of a channel

Theorem 1. Let (Gen, Enc, Dec) be a Shannon Secrecy over a message space M
{0,1}", and let K be the key space as determined by Gen. Then |K| > |M| = 2".

Let’s first consider the set of ciphertexts that can be created by each indi-
vidual message. Denote by C,,, the set of possible ciphertexts for a message
my (across the key space).

0
I+ [¢

Figure 1: Relationship between Cp,, and Cp,,

Question 1: From above Figure 1, What is the relationship between C,,,
and Cp,,?

By the definition of perfect secrecy, for any mi,me, Cp,, = Cy,,. That is,
we can just consider the set C' which will be same regardless of the message.
If there was some ¢ that was possible under some message (but not another)
the adversary could always rule out a message based on that ciphertext. This
violates perfect secrecy.

Recall that Dec function succeeds with probability 1. Since C' is the same
no matter the message, this means for any m there exists some k such that
Dec(k,¢) = m. This means that Dec(k,-) is an onto function. (That is,
Yy, 3z, s.t.Dec(k,z) = y.)

Furthermore, consider the truth table of the decryption function for a par-
ticular ¢. It must be true that for every c,m there exists some k such that
Dec(c, k) = m. (If not then C,, would not include ¢.) This means that for every
¢ there exists the function Dec(c,-) has range of size at least 2. This implies
that [K] > 2.

3 Active Attackers

3.1 What can Attacker do

We showed in the previous class that it is possible to provide perfect secrecy
using the one-time pad or OTP [Ver19]. What does our adversary do now? Do
they give up and go home?

If there is a attacker in the middle of sender and receiver on Figure 2, let’s
think about what Attacker can do. What set of actions might still be available
to them?

Sender Attacker Receiver

Figure 2: Attacker between sender and receiver

1. Learn about key

2. Take message directly from Receiver (by breaking into their computer)
3. Change C

4. Pretend to be one of the parties.

5. Not send C

Case 1: Two messages
Considering the case, two messages: m; = 7 Attack”, mo = ”Defend”.

Attack 01100001 01110100 01110100 01100001 01100011 01101011
Key 10011010 11110010 00110010 11000110 00110010 00000110
Ciphertext | 11111011 10000110 01000110 10100111 01010001 01101101
Defend 01100100 01100101 01100110 01100101 01101110 01100100
Mask 00000101 00010001 00010010 00000100 00001101 00001111
Ciphertext” | 11111110 10010111 01010100 10100011 01011100 01100010

Based on “Attack” @ “Defend”, we can add information to C:

C'=C®(m@&me)=kdm & (m1 &ma) =k®mo

So C have been changed in a way that the message will properly decrypt to
“Defend.”

Case 2: Three messages

Based on mq, mg, m3, our attack still works a fraction of the time. For
example, consider the mask mq & ms.

k@mléBml@mg:k@mg
k®mo =mi D mo D ms
kdms=m1 Dk

Thus, the attack succeeds with a nonzero probability but it is not always
successful. Since in perfectly secure schemes the ciphertext does not depend on
the key it is easy to change C.

New goal: Detect when C is changed.

3.2 Algorithms to prevent an adversary

Message authentication code (MAC)

The aim of a message authentication code is to prevent an adversary from
modifying a message sent by one party to another, without the parties detecting
that a modification has been made.

Definition 1. (Message authentication code): A message authentication code
or MAC is a tuple of probabilistic polynomial-time algorithms (Gen, Mac, Vfy)
fulfilling the following:

1. Gen gives the key k on input 1™, where n is the security parameter.

2 .Mac outputs a tag t on the key k and the input string c.

Mac(a,c) =t

3. Vfy outputs accepted or rejected on inputs: the key k, the string ¢ and the
tag t. Vfy outputs either 1 or O (representing true or false).

The Informal Goal is : Verify(a,c,t) = 1 iff ¢ hasn’t charged. Note that
we don’t care if an adversary changed ¢ but kept = constant.! We now turn to
trying to define security.

Message authentication experiment Mac-forge

The message authentication experiment Mac-forge is :

1. A random key « is chosen.

2. The attacker A creates a message ¢ and receives t = Mac(q, ¢).

IWe use the term ¢ since we were previously discussed how to protect integrity of an
encryption scheme. However Mac algorithms can also be used on plaintext messages.

Cryptosystem Attacker
1 Choose a
2 Choose ¢
‘ 3Sendc
4 Create t= Mac(a, ¢)
5Send t
—_—t
6 Choose ¢/, t’
-
7 Verify(a, ¢’, t')

Figure 3: Message authentication experiment Mac-forge

3. The output of the experiment is defined to be 1 if and only if the adversary
can output a new message and a correct tag, that is,

d#c
Verify(a,d,t') =1

Question 3: When should we say the attacker won?

c #can Verify(a,d,t') = True

Question 4: VA, Pr,[Mac-forgetMac = 1] =07

VA, Pro[Mac-forgedMac = 1] < e

Do we have any hope that the adversary never wins this game? There have
to be some other m/, ¢’ pairs. For any particular message there must be at least
one good tag t’'. Thus, the adversary’s success probability is at least 1/|t|. Thus,
our definition will now have a parameter. We’ll say a scheme (Gen, Mac, Vfy) is
e-unforgeable, if all adversaries A win the Mac — forge game with probability
at most €. Or more formally,

Definition 2. A scheme (Mac, Vfy) is e-unforgeable under chosen message at-
tack if
VA,];{r[Mac — forgeM* = 1] < e

The definition states that no adversary should succeed in the above experi-
ment with probability greater than e.

We’ll now turn to trying to construct such an object. Informally our goal is
the following. Goal: ¢’ is independent of ¢, ¢, t.

References

[Ver19] Gilbert S Vernam. Secret signaling system, July 22 1919. US Patent
1,310,719.

