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1 Review of Last Class

The last class covered some background in probability theory and introduced
the secrecy of a channel. We have learned the definition of perfect secrecy and
Shannon secrecy. Today we will finish discussing the secrecy of channel and
the one-time pad. We will then begin discussing active attackers and message
authentication codes (MACs).

2 Secrecy of a channel

Theorem 1. Let (Gen, Enc, Dec) be a Shannon Secrecy over a message space M
{0,1}", and let K be the key space as determined by Gen. Then |K| > |M| = 2".

Let’s first consider the set of ciphertexts that can be created by each indi-
vidual message. Denote by C,,, the set of possible ciphertexts for a message
my (across the key space).

0
I+ [ ¢

Figure 1: Relationship between Cp,, and Cp,,

Question 1: From above Figure 1, What is the relationship between C,,,
and Cp,,?

By the definition of perfect secrecy, for any mi,me, Cp,, = Cy,,. That is,
we can just consider the set C' which will be same regardless of the message.
If there was some ¢ that was possible under some message (but not another)
the adversary could always rule out a message based on that ciphertext. This
violates perfect secrecy.



Recall that Dec function succeeds with probability 1. Since C' is the same
no matter the message, this means for any m there exists some k such that
Dec(k,¢) = m. This means that Dec(k,-) is an onto function. (That is,
Yy, 3z, s.t.Dec(k,z) = y.)

Furthermore, consider the truth table of the decryption function for a par-
ticular ¢. It must be true that for every c,m there exists some k such that
Dec(c, k) = m. (If not then C,, would not include ¢.) This means that for every
¢ there exists the function Dec(c,-) has range of size at least 2. This implies
that [K] > 2.

3 Active Attackers

3.1 What can Attacker do

We showed in the previous class that it is possible to provide perfect secrecy
using the one-time pad or OTP [Ver19]. What does our adversary do now? Do
they give up and go home?

If there is a attacker in the middle of sender and receiver on Figure 2, let’s
think about what Attacker can do. What set of actions might still be available
to them?
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Figure 2: Attacker between sender and receiver

1. Learn about key

2. Take message directly from Receiver (by breaking into their computer)
3. Change C

4. Pretend to be one of the parties.

5. Not send C

Case 1: Two messages
Considering the case, two messages: m; = 7 Attack”, mo = ”Defend”.

Attack 01100001 01110100 01110100 01100001 01100011 01101011
Key 10011010 11110010 00110010 11000110 00110010 00000110
Ciphertext | 11111011 10000110 01000110 10100111 01010001 01101101
Defend 01100100 01100101 01100110 01100101 01101110 01100100
Mask 00000101 00010001 00010010 00000100 00001101 00001111
Ciphertext” | 11111110 10010111 01010100 10100011 01011100 01100010




Based on “Attack” @ “Defend”, we can add information to C:

C'=C®(m@&me)=kdm & (m1 &ma) =k®mo

So C have been changed in a way that the message will properly decrypt to
“Defend.”

Case 2: Three messages

Based on mq, mg, m3, our attack still works a fraction of the time. For
example, consider the mask mq & ms.

k@mléBml@mg:k@mg
k®mo =mi D mo D ms
kdms=m1 Dk

Thus, the attack succeeds with a nonzero probability but it is not always
successful. Since in perfectly secure schemes the ciphertext does not depend on
the key it is easy to change C.

New goal: Detect when C is changed.

3.2 Algorithms to prevent an adversary

Message authentication code (MAC)

The aim of a message authentication code is to prevent an adversary from
modifying a message sent by one party to another, without the parties detecting
that a modification has been made.

Definition 1. (Message authentication code): A message authentication code
or MAC is a tuple of probabilistic polynomial-time algorithms (Gen, Mac, Vfy)
fulfilling the following:

1. Gen gives the key k on input 1™, where n is the security parameter.

2 .Mac outputs a tag t on the key k and the input string c.

Mac(a,c) =t

3. Vfy outputs accepted or rejected on inputs: the key k, the string ¢ and the
tag t. Vfy outputs either 1 or O (representing true or false).

The Informal Goal is : Verify(a,c,t) = 1 iff ¢ hasn’t charged. Note that
we don’t care if an adversary changed ¢ but kept = constant.! We now turn to
trying to define security.

Message authentication experiment Mac-forge

The message authentication experiment Mac-forge is :

1. A random key « is chosen.

2. The attacker A creates a message ¢ and receives t = Mac(q, ¢).

IWe use the term ¢ since we were previously discussed how to protect integrity of an
encryption scheme. However Mac algorithms can also be used on plaintext messages.



Cryptosystem Attacker
1 Choose a
2 Choose ¢
‘ 3Sendc
4 Create t= Mac(a, ¢)
5Send t
—_—t
6 Choose ¢/, t’
-
7 Verify(a, ¢’, t')

Figure 3: Message authentication experiment Mac-forge

3. The output of the experiment is defined to be 1 if and only if the adversary
can output a new message and a correct tag, that is,

d#c
Verify(a,d,t') =1

Question 3: When should we say the attacker won?

c #can Verify(a,d,t') = True

Question 4: VA, Pr,[Mac-forgetMac = 1] =07

VA, Pro[Mac-forgedMac = 1] < e

Do we have any hope that the adversary never wins this game? There have
to be some other m/, ¢’ pairs. For any particular message there must be at least
one good tag t’'. Thus, the adversary’s success probability is at least 1/|t|. Thus,
our definition will now have a parameter. We’ll say a scheme (Gen, Mac, Vfy) is
e-unforgeable, if all adversaries A win the Mac — forge game with probability
at most €. Or more formally,

Definition 2. A scheme (Mac, Vfy) is e-unforgeable under chosen message at-
tack if
VA, ];{r[Mac — forgeM* = 1] < e

The definition states that no adversary should succeed in the above experi-
ment with probability greater than e.

We’ll now turn to trying to construct such an object. Informally our goal is
the following. Goal: ¢’ is independent of ¢, ¢, t.
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