
CSE 5852: Lecture 22

November 16, 2016

1 Last Class

Last class, we introduced the concept of a hash function. Roughly a hash func-
tion is a compressing function that is difficult to invert (even with all parame-
ters of the function known). We introduced three versions of security for a hash
function H : {0, 1}`×{0, 1}2n → {0, 1}n. (Recall, we already saw a strongly uni-
versal hash function, this only had security if the selection of the hash function
was hidden from the adversary, but it provided information-theoretic security.)

Definition 1. Let K be a set and defined for each k ∈ K the function Hk :
Dk → Rk. Then {Hk}k∈K is a collection of hash functions if:

1. There is a PPT algorithm Gen that on input 1n outputs k ∈ K.

2. |Dk| > |Rk|. So each function Hk actually does reduce its domain.

3. Given k and m ∈ Dk, Hk(m) is efficiently computable.

Collision resistance For all PPT A, there exists a negligible function ε(n)
such that for k ← Gen(1n),

Pr[(m1,m2)← A(1n, k) ∧m1 6= m2 ∧Hk(m1) = Hk(m2)] ≤ ε(n).

this probability is over the choice of k and any randomness used by A.

Second-preimage resistance A hash function is second preimage resistant
if given k and a uniform m it is infeasible for a PPT adversary to find
some m′ 6= m such that Hk(m′) = Hk(m). Note: Look at the distinction
between this and collision resistance. Here A doesn’t get to choose the
point m they are forced to find a preimage on a random point.

Preimage resistance A hash function is preimage resistant if given k and
uniform y it is infeasible for a PPT A′ to find a value m such that H(x) =
y.

Theorem 1. Collision resistance ⇒ Second-preimage resistance ⇒ preimage
resistance1.

1The second implication is only true in the setting where the hash function shrinks the
input significantly.

1

2 Building a collision-resistant hash

Recall our definition of a collision-resistant hash function:

Definition 2. Let K be a set and defined for each k ∈ K the function Hk :
Dk → Rk. Then {Hk}k∈K is a collection of collision-resistant hash functions
if:

1. There is a PPT algorithm Gen that on input 1n outputs k ∈ K.

2. |Dk| > |Rk|. So each function Hk actually does reduce its domain.

3. Given k and m ∈ Dk, Hk(m) is efficiently computable.

4. For all PPT A, there exists a negligible function ε(n) such that for k ←
Gen(1n),

Pr[(m1,m2)← A(1n, k) ∧m1 6= m2 ∧Hk(m1) = Hk(m2)] ≤ ε(n).

this probability is over the choice of k and any randomness used by A.

We’ll now construct a collision resistant hash that is only slightly shrinking.
Let p be an n-bit prime,. Let g be a generator of Z∗p. Construct a collision-
resistant hash function (CRHF) as follows:

1. Pick y ∈ Z∗p at random. (This is our key or index of the hash function.)

2. hp,g,y(x, b) = yb · gx mod p where x ∈ Z∗p and b ∈ {0, 1}.

Note that the size of the domain of h 2(p − 1) and the size of its range is
p− 1. So it compresses by one bit.

Theorem 2. If the discrete logarithm problem is hard, the above hash function
is collision-resistant.

Proof. Suppose A breaks collision resistance of h. That is, there exists a poly-
nomial p(n) such that

Pr
y

[(x, b), (x′, b′)← A(1n, g, p, y) ∧ ybgx ≡ yb
′
gx

′
] >

1

p(n)
.

First note that it is necessary that b 6= b′. Since g is a generator if b = b′ then
ybgx ≡ ybgx

′
implies that x ≡ x′ mod p − 1. So this is not a collision. Thus,

we know that b 6= b′. Assume that b = 0, b′ = 1. This means that A finds a pair
where

gx = h(x, b) = h(x′, b′) = gx
′
y mod p.

Put differently gx−x
′ ≡ y mod p. This means we can use these values to com-

pute the discrete log of y. Here is our new adversary (for the discrete log
problem) A′:

1. Input 1n, p, g, y where y = gz for some unknown z.

2. Run ((x, b), (x′, b′))← A.

3. Verify that A has output a collision (if not output a random value z ∈ Z∗p)

4. If b = 0 output x− x′ mod p− 1 otherwise output x′ − x mod p− 1.

2

2.1 Enhancing compression

Like pseudorandom generators we can make collision resistant hash functions
more compressing. Suppose we have a family of hash functions H : {0, 1}` ×
{0, 1}n+α → {0, 1}n. We can then design a collision-resistant hash function for
an arbitrary length message H ′{0, 1}` × {0, 1}∗ → {0, 1}n.

We split m into x bit blocks m1, ...,mt where mt contains the length of m,
define H ′(m) = H(mt ◦ H(mt−1 · · ·H(m2 ◦ H(m1 ◦ IV)))) where IV is some
fixed value, for example 0n.

3 The Random Oracle Model

The basics of the model are this: assume that H is a public oracle and that
anyone is capable of asking for an evaluation of the hash function. If H has
not been queried on that point before it provides a random output otherwise
it looks up the previous returned value. Importantly, no one has access to the
internals of this function, they can only call it. It is important to note that no
function H has the chance of actually providing this behavior. One of the main
reasons is that in order to evaluate a hash function parties need access to it and
can understand how it works. As a silly example, the hash function can be run
with its own code as input, this is not possible for the random oracle. There
are numerous results showing it is not possible for a hash function to actually
fulfill what is needed of a random oracle [CGH04].

Under this model, security is proved using the following two steps:

1. First, a scheme is designed and proved secure in the random-oracle model.
Other cryptographic assumptions can also be used in the scheme.

2. When we want to implement the scheme the random oracle is instantiated
with a cryptographic hash function. At each point when a part is supposed
to query H(x) it instead queries Hi(x).

The model is used because it provides a way of reasoning about security.

Properties of the random oracle model 1) If x has not been queried to
H, the value of H(x) is a uniform random value.

When we do proofs using the random oracle it allows us to cheat a little bit.
When we are engaging in a reduction with A that uses the random oracle we
get to simulate the random oracle because it doesn’t exist. This is where its
important that A doesn’t have access to the code and had to use an outside
algorithm. If the actual description of H was known to A we Our algorithm A′
is able to create and fake answers to the random oracle.

2) If A queries x to H, the reduction sees the query and learns the value x.
(This does not contradict the fact that queries to the oracle are private. Queries
are private in the model but we are using A as a subroutine within a reduction
that is simulating the random oracle for A. (Extractability)

3) The reduction can set the value of H(x) to a value of its it choice as long
as the value is uniform distributed. (Programmability)

3

Reproducing Cryptographic Objects in the Random Oracle Model
Some basic constructions in the random oracle model:

1. Can be used in place of a pseudorandom generator. Its outputs are pseu-
dorandom as long as the input point is not known. That is,

|Pr[AH(·)(y) = 1]− Pr[AH(·)(H(x)) = 1]| ≤ ε(n).

Note that x doesn’t even have to be fully random, it just needs to be
difficult to guess.

2. Can be used as a collision resistant hash function. The probability that any
two points will collide is the size of the output domain. So the probability
of finding a collision is roughly q2/2n where q is the number of queries to
the random oracle.

3. Can be used to construct a pseudorandom function. Define Fk(x)
def
=

H(k||x).

Security of RSA signatures in the random oracle model For our pur-
poses we will use the model to show security of the RSA construction [BR96].

Gen(1n):

1. Choose two n-bit prime integers p, q using a special algorithm.

2. Compute N = p · q also compute e, d as in Theorem 1.

3. Output vk = e,N , sk = d.

Sign(d,N,m):

1. Query y ← H(m).

2. Compute σ = yd mod N .

Vfy(e,N,m, σ):

1. Compute y′ = σe mod N .

2. Query y ← H(m).

3. Output 1 if and only if y′ = y.

Theorem 3. If the RSA problem is hard relative to the choice of p, q and H is
modeled as a random oracle, then the above construction is secure.

Proof. We will go through the basic structure of the proof. Let A be an ad-
versary that is able to forge with probability 1/p(n). We can assume that if
A requests a signature on a message m or outputs a forgery m,σ then it has
queried m to H. (Why can we assume this?)

Recall what our goal is (as an adversary trying to break the RSA problem).
We are trying to build A′ that receives the following inputs:

1. N, e, y as input.

4

2. Choose a uniform j ∈ {1, ..., q} where q is the maximum number of queries
to the random oracle.

3. Run A on input pk = (N, e).

4. Initialize an empty table. An entry in the table indicate (mi, σi, yi). This
entry indicates that A′ has set H(mi) = yi and σei = yi mod N .

5. When A makes its i-th random-oracle query H(mi), answer as follows:

• If i = y return y as the answer to the query.

• Else choose uniform σi ∈ Z∗N , compute yi = σei mod N . return yi
as the answer and store (mi, σi, yi).

6. A when requests a signature on m, let i be such that m = mi (recall by
assumption when they query m they have previously asked for a random
oracle query on it. Answer as follows:

• If i = j then quit.

• Otherwise, there is an entry in the table, return σi as the answer.

7. When A finishes it outputs (m,σ). If m = mj and σe = y mod N then
output σ.

References

[BR96] Mihir Bellare and Phillip Rogaway. The exact security of digital
signatures-how to sign with rsa and rabin. In International Con-
ference on the Theory and Applications of Cryptographic Techniques,
pages 399–416. Springer, 1996.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle
methodology, revisited. Journal of the ACM (JACM), 51(4):557–594,
2004.

5

