
CSE 5852, Modern Cryptography: Foundations Fall 2016

Lecture 20, 2016

Prof. Benjamin Fuller Scribe: Kirk Gardner

1 Overview

Last class we introduced public key signatures. Our goal is to allow the reciever of a message to be
assured it came from the intended sender. That is, the receiver should know the message was not
changed as well as who created it. The general procedure is as follows

(vk, sk)← Gen(1n) Generate a verification key vk and a signing key sk.

σ ← Sign(m, sk) Sign a message m with sk.

0, 1← Vfy(vk,m, σ) Use vk to check if σ is the correct signature of m.

We also showed the set Z∗N = {a ∈ Z | a < N and gcd(a,N) = 1} is a group under multiplication
for an integer N , and introduced the totient function φ = |Z∗N |.

Theorem 1. Fix N ∈ Z. Fix e ∈ Z such that gcd(e, φ(N)) = 1. The function fe : Z∗N → Z∗N
defined as fe(x) = xe mod N is a permutation. For d ∈ Z such that d = e−1 the function fd is a
permutation, and the inverse of fe. That is

fd(fe)) = x.

Lemma 2. For d ∈ Z such that d = e−1

fd(fe)) = x.

Proof. We need to show xed ≡ x mod N . We know that for some α

ed− 1 = αφ(N) =⇒ ed = αφ(N) + 1

so
xαφ(N)+1 = (xφ(N))α · x

Last class we proved a generalization of Fermat’s little theorem which states xφ(N) = 1, thus

xαφ(N)+1 ≡ x mod N.

This class we will begin to provide assumptions in order to assure only the owner of the signing
key can compute fd while allowing anyone to compute fe. In order to assure an attacker cannot
compute fe from fd we need to satisfy the following minimal requirements

1. Can’t figure out φ(N),

2. Can’t factor (otherwise we can compute φ(N)),

3. Can’t figure out d.

1

2 Factoring is hard

The factoring problem requires choosing two prime numbers such that, when given to an attacker,
their product cannot split them up.

1. Choose prime p, q using a “special algorithm,”

2. compute N = p · q,

3. p′q′ ← A(N),

4. output 1 if p′q′ = N and p‘, q′ 6= 1.

Before going in to detail about the so-called “special algorithm” used for selection the algorithm
parameters we will introduce the RSA assumption.

RSA− inv(1n) (Rivest, Shamir, Adelman 1977)

1. Choose n-bit p, q using “special algorithm,”

2. compute N, e, d,

3. choose uniform y ∈ Z∗N ,

4. x = A(N, e, y),

5. A wins if xe = y mod N.

Assumption 3. If N, e, d are chosen properly for every PPT A there exists a negligible function
ε(n) such that

Pr[RSA− invA(n) = 1] ≤ ε(n).

The “special algorithm” we have been referring to selects paramaters p, q, d, e by picking odd num-
bers at random and performing probabilistic primality tests in order to obtain two prime numbers
p, q satisfying the following minimal assumptions.

1. p, q sould not be too close: |p− q| > 2n1/4 (otherwise, Fermat’s factorization gives p, q),

2. p−q and q−1 shouldn’t have only small factors (otherwise, Pollard’s factorization gives p, q),

3. d has to be big (otherwise Weiner (2009) to compute d if d = n1/4),

4. e should be big enough so xe 6= xe mod N .

3 Basic RSA

The main idea of the RSA problem is to use the permutations of fe and fd in such a way that makes
it easy for anyone to apply the permutation fe while preventing anyone from inverting without d.

The basic RSA signature scheme is as follows

2

1. Gen(1n):

• Choose two n-bit prime integers p, q using the special algorithm,

• compute N = p · q and compute e, d,

• output N, e = vk, d = sk.

2. σ = Sign(d,m) = fd(m),

3. Vfy(N, e,m, σ) = fe(σ) = fe(m
d) = mde = m′. Outout 1 iff m′ = m.

Through the RSA assumption we can argue that it is difficult for the adversary to sign a random
message. In order to talk about the security of the scheme we introduce the EU-CMA experiment

EU− CMAGen,Sign,Vfy,A(1n):

1. sk, vk ← Gen(1n),

2. give vk to A,

3. for i = 1, . . . , k

• get mi from A
• give σi = Sign(sk,mi) to A

4. A outputs m′, σ′.

5. Output 1 if Vfy(vk,m, σ) = 1 and m′ 6= mi for all i = 1, . . . , k.

Definition 4 (EU-CMA Security). A signature scheme is existentially-unforgeable under cho-
sen message attack (EU-CMA) if for all PPT A there exists a negligible ε such that

Pr[EU− CMAA(n) = 1] < ε(n).

We can very easily break this scheme by selecting a signature σ at random and computing σe = m.
Now, this messagem with be uniformly distributed in the message space, butm,σ will still represent
a valid message pair.

4 Hash Functions

Given some function H suppose we redefine our signature scheme as follows:

Sign(d,N,m):

1. Compute y = H(m),

2. Compute σ = H(m)d mod N.

Vfy(e,N,m, σ):

3

1. Compute y′ = σe mod N ,

2. output 1 iff m′ = H(m).

This function H will need to have some properties of a hash function. That is, we are looking for
a function H : {0, 1}∗ → Z∗N with the following properties.

1. One-Way: hard to invert.

2. Collision-Resistant: ifm,m′ are such thatH(m) = H(m′) then Sign(sk,m) = Sign(sk,m′).

3. If Sign(sk,m) = H(m)d and Sign(sk,m′) = H(m′)d it should be hard to find a message m∗

such that
H(m∗) = H(m)H(m′).

In the next class we will investigate what additional properties we need from a hash function in
order to prove security.

4

