
CSE 5852, Modern Cryptography: Foundations Fall 2016

Lecture 19

Prof. Benjamin Fuller Scribe: Chaoqun Yue

1 Last class

Public key encryption is ”autpomatically” secure for multiply messages even if they are adaptively
chosen by the attacker. Also introduced 2 use of public key encryption:
1. Hybrid Encryption: use public key to encrypt symmetric key and encrypt MAC of the message
by using symmetric key.
2. Key-exchange: use public key to transmit symmetric key and use this symmetric key for all
following message.
*However, neither of these methods remove the attacker in the middle problem. The attacker could
(blindly) change the key transmitting using the public key encryption and then we don’t know how
any of our methods are going to work. (This includes the MAC, we don’t know what it does if the
two parties have different keys.)
*What we really need is a method for an individual to send a message where its clear that the
message came from them.

2 Public Key Signature

Signature: Ability for sender to send message and receiver is sure that the mseeage id from sender.
Definition of public key signature:
(sk, vk)← Gen(1n):sk-signing key(private).vk-verification key(public)
σ ← Sign(sk,m): Only someone who get the sk can produce the signature σ
1/0← V erify(vk,m, σ): Someone hold the vk and signature can verify that whether this signature
is valid.
Note that signing is not equal to Encryption because there are some public key signing exists but
they are not encryption.

2.1 One-time signature Lamport 1979

Suppose we have a message with k bits and we wanna sign it. First choose a PRG function G
Vk = S,G(S1,0), G(S2,0), ..., G(Sk,0),G(S1,1), G(S2,1), ..., G(Sk,1)
Sk = S1,0, S2,0, ..., Sk,0, S1,1, S2,1, ..., Sk,1

For message m = m1m2...mk, release σ = S1,m1 , S2,m2 , ..., Sk,mk

V fy(Vk,m, σ) =check that PRG outputs match.
The key fact for this algorithm is that PRG is one-way function.

1

3 Constructing Multi-time Signature

First, let’s back to the Number Theory: discrete log is hard in Z∗p.

3.1 Composite Modular Arithmetic

As we know that Z+
p is a group, now let’s consider a group with respect to multiplication mod N,

and it’s elements should have inverses.
Proposition: let b,N be integers, b ≥ 1, N > 1. b has an inverse mod N if and only if gcd(b,N) = 1.
If b has a inverse mod N, ∃a such that ba ≡ 1 mod N . ba− 1 = xN or ba− xN = 1 and gcd(b,N)
is the smallest ℵ where α where ℵ = by + Nx. If gcd(b,N) = 1, then by + xN = 1 ⇒ by ≡ 1
mod N .
Now we how that Z∗N = {b|gcd(b,N)} is a group and it satisfies:

1. Identity b ≡ 1modN is the identity.

2. Inverse: We have proved above

3. Commutativity follows from the property on the integers.

4. Commutativity follows from the property on the integers.

5. Associativity follows from the property on the integers.

6. For a, b in group ab in group, because both of them have inverse, ab has inverse b−1a−1 so
gcd(ab,N) = 1

Example of group Z∗N , consider N = pq = 3 ∗ 5 = 15

b gcd(b,N)
1 1
2 1
3 3
4 1
5 5
6 3
7 1
8 1
9 3
10 5
11 1
12 3
13 1
14 1
15 15

2

It’s clear that |Z∗N | = 8. |Z∗N | = pq − p− q + 1 = (p− 1)(q − 1). We define φ(N) = |Z∗N |
We have proved in homework that ap−1 ≡ 1 mod p. Actually it holds for any modulus

Theorem 1. ∀N and a ∈ Z∗N , aφ(N) ≡ 1 mod N

Claim: if i 6= j, aai 6= aaj mod N
Proof. Suppose the claim is not correct, then ∃i, j, i 6= j such that aai ≡ aaj mod N ⇒ ai ≡ aj
mod N , which is not possible.Similar to the proof of Fermat’s little theorem:
a1a2...aφ(N) = (aa1)(aa2)...(aaφ(N)) mod N . Multiply the inverse to the left, we get:

a ≡ aφ(N) mod N

Theorem 2. Fix N and some e such that gcd(e, φ(N)) = 1. fe(x) = xe is a permutation(1-to-1)
Furthermore for d = e−1 mod φ(N), fd is the inverse permutation of fe.

4 The Hardness of Factoring

Factoring number seems hard: Given N , find a, b such that ab = N . It’s hard to find an algorithm
run in polynomial time. One easy way to factor: division by 2, 3, ...,

√
N , this algorithm runs in

O(
√
N) time. Consider the following experiment:

Weak-factoring:

1. Choose random n-bit integer x1, x2

2. Multiply N = x1x2

3. Give A,N

4. Get back x′1x
′
2 Output 1 if x′1x

′
2 = N

We say that there is no currently known polynomial time algorithm because ∀PPTA,Pr[Awins] ≤
ε(n). *Now notice that with good probability N will be even so we can’t hope that this problem is
hard on average. In fact the probability that N is divisible by a small factor is very high.
*The numbers that are hardest to factor are those that have only large factors. As before we’ll
assume we have methods to generate large primes. We’ll define a new factoring experiment based
on this.

Factoring n:

1. Choose random n-bit prime x1, x2

2. Multiply N = x1x2

3. Give A,N

4. Get back x′1x
′
2 Output 1 if x′1x

′
2 = N

*Note that it is not sufficient to just choose random n bits primes. As this problem has been studied
more mathematicians have become better at factoring certain classes of problems so we have to
restrict our attention to certain classes of primes.

3

