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1 Overview

We will see that, for public-key encryption schemes, polynomial security is equivalent to ind-cpa
security.

2 Last Class

• The attacker-in-the-middle scenario illustrates the need for a cryptographic “ID”.

• One notion of public-key encryption is polynomial security.

Definition 1. A 3-tuple (Gen,Enc,Dec) is polynomially secure if ∀ PPT A, ∃ negligible ε
such that

|Pr [A(pk,Enc(pk, 0)) = 1]− Pr [A(pk,Enc(pk, 1)) = 1]| ≤ ε(n)

• The 1984 El Gamal encryption scheme, which works as follows.

Algorithm 1: The Gen algorithm.

Input : (p, g)
Output: (pk, sk)

1 generate random x← Z×p
2 compute pk := gx

3 compute sk := x
4 return (pk, sk)

Algorithm 2: The Enc algorithm.

Input : (gx,m) where m ∈ {0, 1}
Output: c

1 generate random y ← Z×p
2 if m = 0 set c := (gy, gxy)
3 else if m = 1 set c := (gy, gxy+1)
4 return c

3 Public Key Encryption for Multiple Messages

Public-key encryption has the tremendous benefit that we don’t need to worry about how many
messages are being protected. If the system is secure for a single message then it works for an
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arbitrary polynomial number of messages. We first need to define a multiple message notion of
security.

In the past we’ve consider multiple message security in the setting where the adversary considers
a vector of messages. This vector was implicitly chosen upfront by the adversary. Importantly,
they didn’t get to see ciphertexts before choosing their next plaintext. We’ll have to define a more
complicated experiment to model the setting where the adversary is able to select their messages
adaptively.

Consider the following experiment ind-cpaGen,Enc,A:

Algorithm 3: The ind-cpaGen,Enc,A experiment.

Output: 0 or 1
1 generate (pk, sk)← GenK(1n)
2 generate random b← {0, 1}
3 for polynomially-many times do
4 receive mi,0,mi,1 ← A
5 send Enc(pk,mi,b)

6 end
7 receive b′ ← A
8 if b = b′ output 1
9 else output 0

The experiment leads us to our next definition.

Definition 2. A scheme (Gen,Enc,Dec) is ind-cpa secure if ∀ PPT A, ∃ negligible ε such that

Pr
[
ind-cpaGen,Enc,A = 1

]
≤ 2−1 + ε(n)

Note this definition differs from polynomially secure in two important ways. First, the adversary
gets to see multiple encryptions. Second they get to choose the messages both after the public-key
has been specified and after seeing all of the previous messages. Somewhat surprisingly, this extra
power does not help the adversary.

Now we can look at the main theorem of these notes.

Theorem 3. A scheme (Gen,Enc,Dec) is polynomially secure if and only if it is also ind-cpa secure.

We only show that polynomial security implies ind-cpa. Define exp-0 to be the ind-cpa experiment
where, instead of randomly generating b, we fix b := 0. Similarly, we define exp-1 to be the case
where we fix b := 1. Which is to say, the adversary sees, for each experiment,

exp-0 exp-1

Enc(pk,m1,0) Enc(pk,m1,1)
...

...
Enc(pk,m`,0) Enc(pk,m`,1)

Then we make the observation that if A breaks ind-cpa security

Pr
[
ind-cpaGen,Enc,A = 1

]
= 2−1 + 2−1

(
Pr
[
exp-0Gen,Enc,A = 1

]
− Pr

[
exp-1Gen,Enc,A = 1

])
≥ 2−1 + p(n)−1
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for some polynomial p. In particular,∣∣∣Pr
[
exp-0Gen,Enc,A = 1

]
− Pr

[
exp-1Gen,Enc,A = 1

]∣∣∣ ≥ q(n)−1

for some polynomial q. It suffices to show that there exists some A′ that breaks the one-time
security of the cryptosystem. For this proof its important for A′ to have a bound on the number
of queries that can be made by A. (We can find a bound on the number of queries by running A
by assuming different powers of n as a bound. If A asks for more queries than we expected we
restart the experiment with nc+1. This will only had a fixed multiplier to our running time and
won’t change whether A′ can execute in polynomial time.)

We’ll assume that A always makes `(n) queries to the ind− cpa oracle.

We define intermediate experiments exp-j for 1 < j ≤ `(n) such that for query i, where i < j,
the adversary receives Enc(pk,mi,0), and for all i thereafter the adversary receives Enc(pk,mi,1).
Which is to say, the adversary sees,

exp-j

Enc(pk,m1,0)
...

Enc(pk,mj−1,0)
Enc(pk,mj,1)

...
Enc(pk,m`,1)

Now we invoke the same hybrid argument as used in prior notes. The details are left to the reader.

Thus, we know that ∃i such that, for some polynomial p,∣∣∣Pr
[
exp-iGen,Enc,A = 1

]
− Pr

[
exp-(i+ 1)Gen,Enc,A = 1

]∣∣∣ ≥ 1

(`(n)q(n))

Now consider an adversary A′

Algorithm 4: The adversary A′.
Input : (pk, c, i) where c = Enc(pk, 0) or c = Enc(pk, 1)

1 for j < i do
2 invoke A on pk
3 receive (mj,0,mj,1)
4 send Enc(pk,mj,0)

5 end
6 if j = i then
7 send c
8 end
9 for i < j ≤ `(n) do

10 invoke A on pk
11 receive (mj,0,mj,1)
12 send Enc(pk,mj,1)

13 end
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We won’t formally show that A′ beats ind-cpa security but the basic idea is they are either receiving
an encryption of 0 or 1 and since the underlying A has different outputs in the two cases so will
A′.

4 Is public-key encryption good enough to create a secure chan-
nel?

We’ve now shown how we can achieve public-key encryption. How can we use this to achieve a
secure channel between the two parties?

4.1 Hybrid Encryption

A simple way of achieving this is to have one party send the other a symmetric encryption key (en-
crypted under the public-key encryption) and then encrypt their entire message using a symmetric
encryption scheme (possible made secure against modification using a MAC algorithm).

Let (PGen, PEnc, PDec) be a public-key cryptosystem. And let (SGen, SEnc, SDec) be a private-
key cryptosystem.

Suppose we have a S and receiver R with public keys pkS and pkR respectively. Use the following
mechanism to have a secure channel between the two parties:

1. S has a message m to send.

2. Run k ← SGen(1n).

3. Encrypt cm = SEnc(k,m).

4. Encrypt ck = PEnc(pkR, k).

5. Send ck, cm

The receiver can perform similar actions when they are sending their message. This technique is
known as hybrid encryption. We use the public-key encryption scheme to send an encryption key
for a symmetric key scheme and then encrypt our message with the symmetric scheme (we can use
a symmetric scheme with a MAC).

4.2 Public-Key encapsulation

We can take the above protocol a step further. Rather than the two parties generating a new key
for each message they can just use the public-key encryption to agree upon a shared key. So a new
key agreement protocol becomes k ← SGen(1n) and then S sends c = PEnc(pkR, k). Then both
parties send using that key on the symmetric channel.
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4.3 The issue of malleability

Remember our goal in introducing identity was to prevent an active attacker from being able to
interrupt the key exchange protocol. Using the Diffie-Hellman protocol, the attacker was able to
cause the two parties to agree on separate keys and know the keys for both parties.

Because we are now using public-key encryption we have gained the property that the attacker
cannot learn the key we are sending. This is definitely an improvement. However, we have no
guarantee that the attacker can not modify c and cause the recipient to get a different key.

Suppose we are at the situation where the parties have keys k and k′ that are different? Is there
an easy way for the parties to detect this?

Suppose we use a good MAC to try and detect the difference.

So after sending c. The sender or receiver creates a random value r and sends MAC(k, r). We
know by the guarantees of the MAC that the attack cannot change r to a value r′ in the setting
where both parties share k. However it might be possible to change the MAC value in a way that
makes it work for a different key. This was never a requirement of the protocol.

Really to bootstrap we need the ability to send a message where a change can be detected. This
leads us to the notion of public-key signatures. These are messages that can only be created by a
single individual. We’ll cover these in detail next week.
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