CSE 5852 — Modern Cryptography:
Foundations - Fall 2016

Paramik Dasgupta
Department of Computer Science and Engineering
University of Connecticut,Storrs
Lecture 16

October 26, 2016

1 Last Class

Last class we defined a pseudorandom function and showed how to construct

it using a pseudorandom generator.

Consider two experiments: exp — prf/ and exp — r. Let A be some PPT

algorithm that outputs either 1 or 0.

Experiment exp — prf/:

Select random s of length «.

Repeat an arbitrary number of times:
Receive x; from A.

Give y; = fi(xi) = f(s,3;) to A.
When A outputs “finished” and

a bit b, output b.

Construction 1.

Experiment exp — r:
Initialize an empty table of values.
Repeat an arbitrary number of times:
Receive z; from A.
Lookup x; in the table of values
if it exists return y; the stored value.
else randomly select y; and
store (z;, ;) in the table.
When A outputs “finished” and
a bit b, output b.

[2] Let G : {0,1}* — {0,1}*" be a PRG. Use Gy(s)

to denote the left half of G’s output and Gi(s) to denote the right half

1

of G’s output.

Then the following function f(s,x) is a PRF: f(s,z) =

Ge, (Ga, (.G (5)))-

Pseudorandom functions are sufficient to create a “secure channel” be-
tween two participants that share a key. There are some important things
that need to be considered: key management, side-channel attacks, padding,
modes of operations. These things are all important. We omit them from
this class not because of importance but to explore other paradigms for cryp-

tography.

2

Data Encryption Standard (DES)

1. Built by IBM

2. Shown to NSA
a). changed some constants (Differential Cryptanalysis)
b). reduced key length

3). Became standard in 80s and 90s

4). Key space became exhaustible mid 90s

Advanced Encryption Standard(AES) [3]

. Open competition by National Institute of Standards and Technology

2). Started in 1998
3). Key sizes 128, 192, 256 bits

The winners were Rijndael, i.e. Vincent Rijmen and Joun Daemen
The current best attacks run in 2'?° for 128 bit key.

AES {0,1}'%8 x {0,1}'%® — > {0,1}'*%
k m

a =k @ m (value a, which is sum of key and message)

al a2 ag a4

as ag ay ag
ag aio an a2
a3 A a3 g — —— — —— — ——— > (S-box substitution)

_______________ > shift rows

bis bis b4 bgs ————————— — —— > mix columns

It works in hierarchical organizations, but does not work online and in
large networks.

4 Public Key Cryptography

In the previous two months we’ve shown how to create a secure channel
between two participants that share a key. We now want to ask what happens
if they don’t have that key. The first task we’ll consider is something called
key agreement. We want a sender and receiver to agree on a K.

There exists a sender, receiver, and in between them, there could be an
attacker.

SENDER - - - - - - — - — — — — —— > RECEIVER

K is pseudorandom having seen entire conversation.

5 Need to create asymmetry between sender /receiver
and attacker

Our one problem : Discrete log
Assumption 1: For all PPTA| negligible €¢(n),

Pr[A(p,g,g” mod p) = x| < ¢(n) Here p and g are known to all.

Sender Receiver Attacker
p p p

g g g

g" g* g”

X gy

What can the attacker compute ?

gr.g¥ =g"
The sender can compute (g¥)* = g™ = (g*)¥
This is the Diffie-Hellman protocol [1]

Let’s ask if this can be easily attacked. What are actions we know how
to do mod p

1. Exponentiate to arbitrary power
2. Multiply values (add in exponent)
3. Square roots

4. compute inverse

5. Take mod

None of these strategies make it immediately obvious that A can compute
g*¥. lIdeally, we would like to show that an adversary that can compute g*¥
can be used to compute x or y. However, this is not known either. There is
no know reduction from learning g*¥ to the discrete logarithm assumption.
This leaves us in the somewhat troubling place of having to introduce another
assumption:

Claim 1. If you can compute discrete log, Then DH is insecure.
We actually need to create a new assumption.

Assumption 1. [1j/Computational Diffie-Hellman Assumption] For any
PPT A, there exists a negligible € such that for a random n-bit p and its
generator and select a random x,y € Zy,

PrlA(1",p,g,9" mod p,g’ mod p) = g™] < €(n).
Claim 2. If the CDH problem is hard then so is Discrete log.

This assumption says it will be unlikely for an attacker to be able to
predict the value ¢g*¥ which we’d like to use as the key. As before this doesn’t
tell us anything about whether the adversary has some information about
g*¥. They might know the first/last bit (as in the case of the pseudorandom
generator. This leads us to yet another assumption.

Assumption 2. [1/[Decisional Diffie-Hellman Assumption] For any PPT
A, there exists a negligible € such that for a random n-bit p and its generator
and select a random x,y, z € Z,

Pr[A(1",p,9,9", 9%, 9") = 1] = Pr[A(1",p, 9,9, 9", 9°) = 1] < e(n).

We noted above that Assumption 2 implies Assumption 1 (that is if we
have an efficient algorithm to solve discrete log we also have an efficient
algorithm to solve computational Diffie-Hellman). We’'ll now show that As-
sumption 3 implies Assumption 2.

Theorem 1. If there exists PPT A that breaks the computational DH as-
sumption with an inverse polynomial probability then there exists PPT A’ that
breaks the decistonal DH assumption with an inverse polynomial probability.
(That is, decisional DH implies computational DH.)

5.1 Drawbacks of Diffie-Hellman

1. Interactive (Both sending messages)
2. ¢*, g¥ cannot be reused (at least this isn’t clear).

3. Not secure against active attacker A (attacker -in-middle)

References

[1] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, 1T-22(6):644-654, 1976.

2] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. J. ACM, 33(4):792-807, 1986.

[3] Frederic P Miller, Agnes F Vandome, and John McBrewster. Advanced
encryption standard. 2009.

