CSE 5852 – Modern Cryptography: Foundations - Fall 2016

Paramik Dasgupta Department of Computer Science and Engineering University of Connecticut, Storrs Lecture 16

October 26, 2016

1 Last Class

Last class we defined a pseudorandom function and showed how to construct it using a pseudorandom generator.

Consider two experiments: $\exp - \operatorname{prf}^{f}$ and $\exp - r$. Let \mathcal{A} be some PPT algorithm that outputs either 1 or 0.

Experiment $\exp - \operatorname{prf}^{f,\mathcal{A}}$: Select random <i>s</i> of length κ . Repeat an arbitrary number of times: Receive x_i from \mathcal{A} . Give $y_i = f_s(x_i) = f(s, x_i)$ to \mathcal{A} . When \mathcal{A} outputs "finished" and a bit <i>b</i> , output <i>b</i> .	Experiment exp $- \mathbf{r}^{\mathcal{A}}$: Initialize an empty table of values. Repeat an arbitrary number of times: Receive x_i from \mathcal{A} . Lookup x_i in the table of values if it exists return y_i the stored value. else randomly select y_i and store (x_i, y_i) in the table. When \mathcal{A} outputs "finished" and a bit h output h
	a bit b , output b .

Construction 1. [2] Let $G : \{0,1\}^n \to \{0,1\}^{2n}$ be a PRG. Use $G_0(s)$ to denote the left half of G's output and $G_1(s)$ to denote the right half

of G's output. Then the following function f(s,x) is a PRF: $f(s,x) = G_{x_n}(G_{x_{n-1}}(\ldots,G_{x_1}(s))).$

Pseudorandom functions are sufficient to create a "secure channel" between two participants that share a key. There are some important things that need to be considered: key management, side-channel attacks, padding, modes of operations. These things are all important. We omit them from this class not because of importance but to explore other paradigms for cryptography.

2 Data Encryption Standard (DES)

- 1. Built by IBM
 - 2. Shown to NSA
 - a). changed some constants (Differential Cryptanalysis)
 - b). reduced key length
 - 3). Became standard in 80s and 90s
 - 4). Key space became exhaustible mid 90s

3 Advanced Encryption Standard(AES) [3]

- Open competition by National Institute of Standards and Technology 2). Started in 1998
 - 3). Key sizes 128, 192, 256 bits

The winners were Rijndael, i.e. Vincent Rijmen and Joun Daemen

The current best attacks run in 2^{126} for 128 bit key.

AES
$$\{0,1\}^{128} \ge \{0,1\}^{128} - > \{0,1\}^{128}$$

k m

 $a = k \oplus m$ (value a, which is sum of key and message)

 a_1 a_2 a_3 a_4 a_6 a_7 a_8 a_5 a_9 a_{10} a_{11} a_{12} $a_{16} - - - - - - - - > (S-box substitution)$ a_{14} a_{13} a_{15} b_1 b_2 b_3 b_4 ----> shift rows b_3 b_4 b_1 b_2 b_6 b_7 b_8 b_5 \mathbf{b}_{9} b_{10} b_{11} b_{12} $b_{15} - - - - - - - - - - - - - - - - - > mix columns$ b_{16} b_{13} b_{14} linear transformation of each row

It works in hierarchical organizations, but does not work online and in large networks.

4 Public Key Cryptography

In the previous two months we've shown how to create a secure channel between two participants that share a key. We now want to ask what happens if they don't have that key. The first task we'll consider is something called key agreement. We want a sender and receiver to agree on a K.

There exists a sender, receiver, and in between them, there could be an attacker.

```
SENDER ----> RECEIVER
K K K
```

K is pseudorandom having seen entire conversation.

5 Need to create asymmetry between sender/receiver and attacker

Our one problem : Discrete log

Assumption 1: For all PPTA, negligible $\epsilon(n)$,

 $\Pr[A(p,g,g^x \mod p) = x] \le \epsilon(n)$ Here p and g are known to all.

Sender	Receiver	Attacker
р	р	р
g	g	g
g^x	g^x	g^x
х		g^y

What can the attacker compute ?

 $g^{x}.g^{y} = g^{x+y}$ The sender can compute $(g^{y})^{x} = g^{xy} = (g^{x})^{y}$ This is the Diffie-Hellman protocol [1]

Let's ask if this can be easily attacked. What are actions we know how to do mod p

- 1. Exponentiate to arbitrary power
- 2. Multiply values (add in exponent)
- 3. Square roots
- 4. compute inverse
- 5. Take mod

None of these strategies make it immediately obvious that \mathcal{A} can compute g^{xy} . Ideally, we would like to show that an adversary that can compute g^{xy} can be used to compute x or y. However, this is not known either. There is no know reduction from learning g^{xy} to the discrete logarithm assumption. This leaves us in the somewhat troubling place of having to introduce another assumption:

Claim 1. If you can compute discrete log, Then DH is insecure.

We actually need to create a new assumption.

Assumption 1. [1][Computational Diffie-Hellman Assumption] For any PPT \mathcal{A} , there exists a negligible ϵ such that for a random n-bit p and its generator and select a random $x, y \in \mathbb{Z}_p^*$,

$$\Pr[\mathcal{A}(1^n, p, g, g^x \mod p, g^y \mod p) = g^{xy}] \le \epsilon(n).$$

Claim 2. If the CDH problem is hard then so is Discrete log.

This assumption says it will be unlikely for an attacker to be able to predict the value g^{xy} which we'd like to use as the key. As before this doesn't tell us anything about whether the adversary has some information about g^{xy} . They might know the first/last bit (as in the case of the pseudorandom generator. This leads us to yet another assumption.

Assumption 2. [1][Decisional Diffie-Hellman Assumption] For any PPT \mathcal{A} , there exists a negligible ϵ such that for a random n-bit p and its generator and select a random $x, y, z \in \mathbb{Z}_p^*$,

$$\Pr[\mathcal{A}(1^{n}, p, g, g^{x}, g^{y}, g^{xy}) = 1] - \Pr[\mathcal{A}(1^{n}, p, g, g^{x}, g^{y}, g^{z}) = 1] \le \epsilon(n).$$

We noted above that Assumption 2 implies Assumption 1 (that is if we have an efficient algorithm to solve discrete log we also have an efficient algorithm to solve computational Diffie-Hellman). We'll now show that Assumption 3 implies Assumption 2.

Theorem 1. If there exists PPT \mathcal{A} that breaks the computational DH assumption with an inverse polynomial probability then there exists PPT \mathcal{A}' that breaks the decisional DH assumption with an inverse polynomial probability. (That is, decisional DH implies computational DH.)

5.1 Drawbacks of Diffie-Hellman

- 1. Interactive (Both sending messages)
- 2. g^x, g^y cannot be reused (at least this isn't clear).
- 3. Not secure against active attacker A (attacker -in-middle)

References

- [1] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. *IEEE Transactions on Information Theory*, IT-22(6):644–654, 1976.
- [2] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. J. ACM, 33(4):792–807, 1986.
- [3] Frederic P Miller, Agnes F Vandome, and John McBrewster. Advanced encryption standard. 2009.