
CSE 5852: Lecture 14

Benjamin Fuller

October 17, 2016

1 Last Class

Last class we finished our proof that the following two definitions are equivalent:

Next-bit unpredictability Define the following experiment prg− predict,
parameterized by n:

1. Select random s of length n(k).

2. Compute y = G(s).

3. Run A(1n), giving it bits of y in response to each next request.

If A stops after i ≤ m(n) stages and outputs b = yi we that that A wins
prg− predict and it outputs 1.

An attacker can win the above experiment with probability 1/2 by guessing
a random bit and ignoring the bits it is being given. Similarly to security of
encryption we have the following definition.

Definition 1. [BM84]. A function Gn(s) : {0, 1}k → {0, 1}m is a pseudoran-
dom generator satisfying next bit unpredictability if for all PPT A,

Pr[prg− predictG,A = 1] ≤ 1/2 + ε(n)

where ε(n) is a negligible function of n.

All efficient tests That is consider two experiments: exp− pr and exp− r.
Let T be some PPT test that outputs either 1 or 0.

Experiment exp− prG,T :
Select random s of length n.
Compute y = G(s)
Run T (y) and output whatever it does.

Experiment exp− rT :
Select random y of length m
Run T (y) and output whatever it does.

Definition 2. [Yao82] G passes all statistical tests if for all PPT T , there
exists negligible function ε(n) such that for all n,∣∣Pr[exp− prG,T = 1]− Pr[exp− rT = 1]

∣∣ ≤ ε(n).

We also showed part of the proof that the two definitions are equivalent.

Theorem 1. An algorithm G passes all statistical tests if and only if it is next
bit unpredictable.

1

2 Using a pseudorandom generator

In the previous classes we introduced a candidate pseudorandom generator
(based on the discrete logarithm problem), showed is secure if the DL prob-
lem is hard, and showed the equivalence of two definitions. We also showed that
a pseudorandom generator can be used to construct a one-time secure compu-
tational encryption scheme. In this class we will start to explore the power of a
pseudorandom generator. It can be used to construct a lot of powerful objects.
We’ll show that a pseudorandom generator can be used to create an encryption
scheme that is secure for sending multiple messages (with a single key) and is
sufficient to prevent adversary tampering (again with a single key).

We’ll start with small jump which is that the length of the output of a
pseudorandom generator doesn’t matter as long as it expands the output.

Theorem 2. Let G : {0, 1}n → {0, 1}m be a pseudorandom generator (passing
all efficient statistical tests) where m > n. Let m′ = poly(n) where m′ > m.
Then, there exists G′ : {0, 1}n → {0, 1}m′

that is a pseudorandom generator.

Before presenting how G′ works lets talk a little bit about the implication.
We called the difference between m and n (m−n) the expansion factor of a PRG.
This theorem says that the expansion factor doesn’t matter, we can have any
expansion factor we want once we have some expansion factor. Furthermore,
we can always decrease the expansion factor as well.

Lemma 1. Let G : {0, 1}n → {0, 1}m be a pseudorandom generator (passing
all efficient statistical tests) where m > n. Let m′ < m. Then, there exists
G′ : {0, 1}n → {0, 1}m′

that is a pseudorandom generator.

Proof. Just take the first m′ bits of G and call that G′.

Together these statements say that the expansion factor of a PRG doesn’t
matter we can expand or shrink this factor. (At some cost to security and
efficiency of the PRG.)

Let’s think about how to build a PRG with a better expansion factor than G.
In the previous class we said that the output of G was as good as random. The
idea was that any algorithm that could tell between the output of G and random
would be a distinguisher and could be used to create an efficient statistical test.
So as a group lets come up with a mechanism to double the expansion factor of
G.

Theorem 3. Let G : {0, 1}n → {0, 1}m be a PRG. Let y1...ym denote the
output of G. Then function G′ = G(y1...yn)yn+1...ym is a PRG with expansion
2(m− n).

Proof. Denote by m′ = 2m−n which is the output length of G′. We proceed by
the contrapositive. Assume that G′ is not a pseudorandom generator, we will
use this to contradict the fact that G is a PRG. Since G′ is not a PRG, there
exists some PPT A and some polynomial p such that,

Pr[A(G′(S)) = 1]− Pr[A(Um′) = 1] > 1/p(n).

As in the previous class we will use the hybrid argument. We will come up with
an intermediate experiment between these two. Define exp− 0 as the one that
has the output of G′ and exp− 2 as the output of Um′ . Then,

2

|Pr[A(exp− 0) = 1]− Pr[A(exp− 2) = 1]| > 1/p(n).

We’ll define an intermediate experiment exp− 1 as the following:

• Sample random u1...un.

• Construct x1...xm = G(u1...un)

• Sample random z1...zm.

• Output x1...xm−nz1...zm.

As before we can use the triangle inequality to show that

|Pr[A(exp− 0) = 1]− Pr[A(exp− 2) = 1]| ≤
|Pr[A(exp− 0) = 1]− Pr[A(exp− 1) = 1]|+ |Pr[A(exp− 1)− Pr[A(exp− 2) = 1]|.

As before we can argue that one of these terms must be greater than 1/2p(n).
(What happens if the are both less than 1/2p(n)?)

We know need to show we can break the security of G in either case. We’ll
built a new test A′ to break G in either situation.

First case |Pr[A(exp − 0) = 1] − Pr[A(exp − 1) = 1]| > 1/2p(n) This is the
easier direction of the proof. We need to construct a A′ in this case. Recall that
we receive m bits as input that are either random or pseudorandom. We do the
following:

1. Receive x1...xm.

2. Create y1...ym = G(x1...xn).

3. Output A(y1...ym||xn+1...xm).

Note that if the bits x we got as input were pseudorandom then the input we
provide to A is exactly as generated in exp − 0. If x is random then the input
we provide to A is exactly as generated in exp− 1. That is,

|Pr[A′(G(S)) = 1]−Pr[A′(Um) = 1]| = |Pr[A(exp−0) = 1]−Pr[A(exp−1) = 1]| > 1/2p(n).

as required. This is a contradiction.

Second case |Pr[A(exp−1) = 1]−Pr[A(exp−2) = 1]| > 1/2p(n) This is the
easy case. Note that the last m − n bits are random in both experiments. So
our distinguisher, A′ is very simple:

1. Receive y1...ym.

2. Flip random bits xm−n+1..xm.

3. Output A(y1...ym||xm−n+1...xm).

Note that if the bits y we got as input were pseudorandom then the input we
provide to A is exactly as generated in exp − 1. If y is random then the input
we provide to A is exactly as generated in exp− 2. That is,

|Pr[A′(G(S)) = 1]−Pr[A′(Um) = 1]| = |Pr[A(exp−1) = 1]−Pr[A(exp−2) = 1]| > 1/2p(n).

as required. This is a contradiction.
Since we have a contradiction in both cases we have a contradiction overall.

Thus, G′ is secure if G is secure.

3

3 Encryption secure with multiple messages

What could we do with a truly random function (who’s description is unknown
to the adversary)?

• First let’s and build an encryption scheme. An attacker even with knowing
the input to the function has no idea what the output will be. So the
output of the function is actually random. We’ll assume a function f :
{0, 1}n → {0, 1}`. Consider the following encryption scheme:

1. Input function f and message m.

2. Select a random r ← {0, 1}n.

3. Output c = f(r)⊕m, r.

And the corresponding decryption:

1. Input function f and ciphertext c = c′, r.

2. Compute m = f(r)⊕ c′.

• Second, let’s try and build a MAC scheme. Lets recall what a strongly
universal function provided. It said that on any two points the output of
the function was truly random. What if we had a truly random function
instead? Then the output would be random on every point. This suggests
the following MAC scheme.

1. Input function f and message/ciphertext m.

2. Output t = f(m).

Let’s recall our definition of multi-message secure MAC scheme: Our defini-
tion models the situation where messages are sent in sequence. The adversary
should only have to modify a single message to win. This leads us to the fol-
lowing experiment.

Mac− forgeA,Mac,k:

1. Key k ← Gen().

2. The adversary, A outputs m1 and is given t1 ← Mac(k,m).

3. This process repeats with the adversary outputting mi and being given ti.
Note that mi can depend on t1, ..., ti.

4. After k iterations the adversary outputs (m′, t′).

5. The output of the experiment is 1 if m′ 6= mi for any i and Vfy(k,m′, t′) =
1. Otherwise the output is 0.

Definition 3. A MAC scheme is k-chosen message unforgeable if Pr[Mac− forgeA,Mac,k] <
ε.

Theorem 4. The MAC scheme presented above is k-chosen message unforge-
able for ε = 1/2`.

4

The encryption scheme is slightly more complicated. The encryption scheme
works well as long as the value r is not repeated between messages. Thus,
we’ll present security in the computational world (even though the scheme is
information-theoretically secure).

We first present a definition for indistinguishable encryptions:

Definition 4. An encryption scheme (K,Enc,Dec) has k-indistinguishable en-
cryptions if for all PPT A for all vectors m1 = m1,1, ...,m1,k and m2 = m2,1, ...,m2,k

there exists some negligible ε such that the following is true,

|Pr[A(Enc(key,m1,1),Enc(key,m1,2), ...,Enc(key,m1,k)) = 1]

−Pr[A(Enc(key,m2,1),Enc(key,m2,2), ...,Enc(key,m2,k)) = 1] < ε.

Theorem 5. The above encryption scheme is k-message unforgeable for ε ≈
k

2
√

n .

However, neither of these schemes can be efficiently instantiated because
storing and computing a random function takes an exponential amount of
space/time.

Definition 5 (Informal Definition). A pseudorandom function is a function
f : {0, 1}s × {0, 1}n →→ ` such that for a fixed (but unknown) key key no
PPT A can tell the difference between interacting with fs and a truly random
function.

Theorem 6. If PRGs exist then so do pseudorandom functions (PRF)s.

References

[BM84] Manuel Blum and Silvio Micali. How to generate cryptographically
strong sequences of pseudorandom bits. SIAM journal on Computing,
13(4):850–864, 1984.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptog-
raphy. IEEE Transactions on Information Theory, IT-22(6):644–654,
1976.

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions
(extended abstract). In FOCS, pages 80–91, 1982.

5

