CSE 5852: Lecture 13

Benjamin Fuller

October 12, 2016

1 Last Class

Last class we finish our proof that the Blum-Micali PRG satisfies next-bit un-
predictability assuming that the discrete logarithm problem is hard in Z;. We
started to look at two definitions:

Next-bit unpredictability Define the following experiment prg — predict,
parameterized by n:

1. Select random s of length n(k).
2. Compute y = G(s).
3. Run A(1"™), giving it bits of y in response to each next request.

If A stops after i < m(n) stages and outputs b = y; we that that A wins
prg — predict and it outputs 1.

An attacker can win the above experiment with probability 1/2 by guessing
a random bit and ignoring the bits it is being given. Similarly to security of
encryption we have the following definition.
Definition 1. [BM8/]. A function G,(s) : {0,1}¥ — {0,1}™ is a pseudoran-
dom generator satisfying next bit unpredictability if for all PPT A,

Prlprg — predict®4 = 1] < 1/2 + ¢(n)
where €(n) is a negligible function of n.

All efficient tests That is consider two experiments: exp — pr and exp — r.
Let T be some PPT test that outputs either 1 or 0.

Experiment exp — pr®7: Experiment exp — r’:
Select random s of length n. Select random y of length m
Compute y = G(s) Run T'(y) and output whatever it does.

Run T'(y) and output whatever it does.

Definition 2. [Yao82] G passes all statistical tests if for all PPT T, there
exists negligible function e(n) such that for all n,

’Pr[exp —pr%T = 1] — Prlexp — r’ = 1” < e(n).
We also showed part of the proof that the two definitions are equivalent.

Lemma 1. An algorithm G passes all statistical tests if it is next bit unpre-
dictable.



2 Computational Security of Encryption

Before finishing our proof of computational security I want to make formal our
claim that if we have a PRG that passes all statistical tests then it gives a secure
encryption scheme.

Theorem 1. Let G : {0,1}™ — {0,1}™ be a function that passes all efficient
statistical tests. Then Enc(s,m) = G(s) ® m is an encryption scheme with
indistinguishable encryptions.

Proof. Last class I said this proof was pretty simple but lets be formal about
it. We had the notion that if something passes all statistical tests then we can
substitute the output of the function for random. How are we going to do this
proof? For once the answer is not by contradiction or contrapositive.

Lemma 2. If G passes all statistical tests, then for all constant ¢, G(s) ® ¢
passes all statistical tests.

This lemma is on Problem Set 4. Let A be some indistinguishable encryption
distinguisher for messages my, ms. Let U, be the uniform random variable of
length m.

By the above definition we know that for any there exists some negligible
€1(n) such that

IPHAG(S) @ m1) = 1] — Pr[A(U ® m1) = 1]| < 1 ().
Similarly,
[Pr[A(G(S) ® ma) = 1] — Pr[A(U,, @ ma) = 1]| < e2(n).
We also know by Shannon secrecy of the one-time pad that
Pr[(Um @ my) = ¢] = Pr[(U,, & my) = ¢
And thus,
| Pr[A(Up, @ my) = 1] — Pr[A(U,,, ® ma) = 1]| = 0.
The triangle inequality says that d(A4, B) < d(A,C)+d(C, B). We can apply
that to the difference between two probabilities. We can add an intermediate
point, that is,

| Pr{A(G(S) ® ma) = 1] = PrlA(G(S) @ m2) = 1]|
< |Pr[A(G(S) ® m1) = 1] — Pr[A(Uy, ® mq) = 1]
+ | Pr[A(U,, & m1) = 1] — Pr[A(U,, @ ma) = 1]
+ |Pr[A(G(S) ® ma) = 1] — Pr[A(U,, ® m2) = 1]|
<e1(n)+ 0+ ex(n)

By Problem Set 3 the sum of two negligible functions is negligible, thus ¢; + €2
is negligible and the scheme satisfies indistinguishable encryptions. O



3 Definitional Equivalence

Lemma 3. An algorithm G passes all statistical tests if it is next bit unpre-
dictable.

Proof. As is standard we are going to proceed by contradiction. We’re going to
assume that there exists a polynomial time computable statistical test that G
does not pass. We need to build a next bit predictor.

How can we hope to construct such a thing? We can run our statistical test
until we have all of the bits. However at this point we’ve already failed the next
bit predictor. There is nothing left to predict. How, can we hope to use this
statistical test?

The key to this proof is something called the hybrid argument. Consider
some statistical test T' that distinguishes the two settings. Let the random
variable Y represent the output of the pseudorandom generator and U represent
a uniform random string. We know there is some statistical test such that

[Pr[T(Y) = 1] = Pr[T(U) = 1]| > 1/p(n).
For some polynomial function p(n). Note that T is just getting some sequence
of bit either drawn from Y or U. Let’s use the same triangle inequality we used
in the previous proof.
| Pr[T(Y1....Y,,) = 1] — Pr[T(U4..Uy) = 1]
S ‘PI‘[T(Ylym_lym) = 1] - PI‘[T(Ylym_lUm) = 1]‘
+|Pr[T(YV1...Y51Up) = 1) = Pr[T(Uy...Up) = 1]].

We can continue to expand this using the triangle inequality:

| Pr[T(Yy...Y,) = 1] — Pr[T(U...Uy,) = 1]
< | PrT(YV YY) = 1] = PrT (V1. Vi1 Un) = 1]
+|Pr[T(Y1 Vin-1Um) =1] = PrT(Y1...Yon 2Um1Um) = 1]]
+ | PrT(Yi... Yoo Upo1 Up) = 1] — Pr[T(Yl.... Yin—3Um—2Unm—1Up) = 1]]

F o
+ | Pr[T(Y1Us...Up) = 1] — Pr[T(Uy...U,) = 1].

Each line here implicitly defines an intermediate experiment where we provide
some pseudorandom bits and some random bits. These are called hybrid ex-
periments. They represent smaller steps between the two experiments we are
about and have components from both.

Furthermore there exists some i such that

1
mp(n)

And note that mp(n) is a polynomial. Lets assume for a moment that we know
i and that

|PI‘[T(Y1}/1,1Y;UZ+1Um) = 1] - Pr[Yl....K,lUiUHl...Um = ].H >

1
mp(n)’

Where we have removed the absolute values (the proof goes through if the
opposite is true, we’ll see how).
We now describe our bit predictor A:

PT[T(Y&Y—Z,lKUH,lUm) = 1} - Pr[Yl....)/i,lUiUHl...Um = 1] 2



—_

. Say next until you have received i — 1 bits y1....4;_1.

2. Generate m(n) — (i — 1) random bits r;....r,

3. Run T'(y1...Yi—174--T'm)-

4. If T returns 1 output b = r; otherwise output b =1 —r;.

The idea of why A works is that if r; happens to be the next bit of y we
will be on the left side of our inequality and 7" is more likely to output 1, if r;
happens to be the wrong bit we are more likely to be on the right side of our
inequality and T is more likely to output 0. Thus, when T outputs 0 we assume
we got the guess wrong. Lets use g to denote the bit we guessed and let z be
the input to T'.

We have

Prp=y| =Pr[T(z) =1Ay; =g]+Pr[T(z) =0Ay; =1—g].

Define z; to be the string of ¢ bits of y followed by the remaining bits of
u and 29 be the string of ¢ — 1 bits of y followed by 1 — y; and then bits of r
(and notice we're providing one of these inputs. Our input z = 2 if y; = g and
z = z9 if y; =1 — g. We can rewrite the above probability as

Pro=y;| =Pr[T(z1) =1Ay; =g+ Pr[T(22) =0Ay; =1 —g].

Note that the probability we guessed y; is exactly 1/2, that is Prly; = 1] =
1/2 furthermore z1, zo don’t depend on g so we can split up this probability:
Prb=y;)| =Pr[T(z1) =1Ay; =g] + Pr[T(22) =0Ay; =1 —g]
= Pr[T'(z1) = 1] Prly; = g] + Pr[T(22) = 0] Prly; = 1 — g

_ % (Pr[T(21) = 1] + Pr[T(25) = 0])

_ % (Pr[T(z1) = 1] + 1 — Pr[T(z2) = 1])

_ 1 N (Pr[T(21) = 1] — Pr[T(22) = 1])
9 2

Our goal now is to transform these z1,2s back into the experiments we
describe above. Lets consider Pr[T(Y7...Y;_1Y;U;y1...Uy,) = 1] this experiment
always gets z1 as input (the correct guess. So Pr[T'(Y1...Y;—1Y;U;11..Uy) = 1] =
Pr[T(z1) = 1]. On the other hand consider Pr[T'(Y;...Y;—1U;U;41...Uy,) = 1] this
experiment gets a random bit in the ith position so half the time it gets z; and
half the time it gets zo. That is,

PI‘[T(Yl...Y;'_lUiUi_;,_l...Ufm) = 1] = 1/2 PI‘[T(Zl) = 1] + PI‘[T(ZQ) = 1]
Subtracting the two equations yields

1/2(Pr[T(z1) = 1] - Pr{T(z2) = 1]) =

1
Pr|T }/'1}/1_11/;(]1 lUm =1]—Pr YiY;_lUvZUvz lUm =1 Z .
o 1o Un) = 1] = Pr| + 2
That means that our predictor guesses the next bit with an inverse polynomial
probability as desired. O



Notes: We did a couple of things that were a little confusing. The first is that
we removed the absolute values and just assumed that the probability T output
1 when given i pseudorandom bits was higher. If this wasn’t the case, we would
have inverted the output. Note that the correct choice for which to do might
depend on the security parameter but one choice will work for at least half of n
which is enough to cause a contradiction. Second, we showed that there is some
i where T has to have an advantage. How does P know which ¢ to choose. The
answer is that it doesn’t, the right thing to do is to choose a random ¢. While
our proof showed there is some ¢ where the T" has an advantage it is actually
true for a random ¢. Not all ¢ have to have the same advantage but the average
over them is polynomial.

4 Extending a pseudorandom generator

So we’ve shown how to construct a pseudorandom generator based on one com-
putational assumption. Lets assume that we have a pseudorandom generator
G : {0,1}™ — {0,1}™. How can we get more bits out of this object? We can
run it sequentially using its own output.

References

[BM84] Manuel Blum and Silvio Micali. How to generate cryptographically
strong sequences of pseudorandom bits. SIAM journal on Computing,
13(4):850-864, 1984.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptog-
raphy. IEEE Transactions on Information Theory, IT-22(6):644-654,
1976.

ao ndrew 1-Chi ao. eory and applications of trapdoor functions
Yao82] And Chi-Chih Y: Th d licati f d f i
(extended abstract). In FOCS, pages 80-91, 1982.



