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1 Last Class

Last class we introduce the idea of pseudorandomness. Our goal is to produce a string using a
limited amount of randomness that computationally limited adversaries cannot tell apart from
a truly random string. We defined a pseudorandom generator as a deterministic function G :
{0, 1}n → {0, 1}m where m > n. The security goal is when G is provided with a random value its
output should also look random.

We then defined the notion of next-bit pseudorandomness.

Let A be a bit predictor. Define the following experiment prg− predict, parameterized by n:

1. Select random s of length n(k).

2. Compute y = G(s).

3. Run A(1n), giving it bits of y in response to each next request.

If A stops after i ≤ m(n) stages and outputs b = yi we that that A wins prg− predict and it
outputs 1.

Bit predictor: A bit predictor is a machine working in two steps: 1) Get a bit yi from a sequence
and 2) output next bit or go back to step 1).

Definition 1 (Pseudo Random). A sequence y1, y2, ..., ym is pseudo random if for all PPT A there
exists negligible function ε such that

Pr[prg− predictG,A = 1] ≤ 1/2 + ε(n)

Discrete logarithm problem: For any PPT A there exists a negligible function ε, s.t. for a
random n − bit prime p, a generator g and a random integer x ∈ Zp∗, Pr[A(1n, p, g, gx mod p) =
x] < ε(n). The following contents of this lecture will be based on the assumption that Discrete log
is hard to solve.

Construction of a pseudo random generator: First, let G(p, g, x) be a function to generate
a sequence of integers: x1 = gx mod p, x2 = gx1 mod p, x3 = gx2 mod p, ..., xn = gxn−1 mod p.
Second, let B(x) be a function outputs 1 if x ≥ p/2 and outputs 0 if ≤ p/2. Feed B(x) the integers
generated by G(p, g, x) and reverse the order, we claim that the sequence B(xm−1) . . . B(x) is a
PRG.
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2 Proof for the PRG

The proof is completed by two parts:

Lemma 1. If I can predict B(x) from gx mod p then I can solve discrete log problem efficiently.

Theorem 2. Using G as described is PRG with the assumption of part 1.

These two parts can be proved independently and the order doesn’t matter. In this lecture we will
prove Lemma 1 and describe the strategy for part 1 completely and cover a little bit of part 2.

2.1 Proof of Lemma 1

Goal: Show if discrete log is hard to solve then B(x) is hard to be predicted from gx mod p.

This will be proved by contrapositive, which being said, we first assume we can somehow predict
B(x), then we will use this fact to break down discrete log problem. On the other side it means if
discrete log problem is hard to solve, then there is no algorithms can predict B(x). We first give
the assumption:

Assumption 3. Assume there exists a predictor P who takes p, g, gx mod p and predicts B(x),
s, t. Pr[P (p, g, gx mod p)] ≥ 1/2 + ε(n).

Actually, to make this proof easier we will make a stronger assumption:

Assumption 4. Assume there exists a predictor P who takes p, g, gx mod p and predicts B(x),
s, t. Pr[P (p, g, gx mod p)] = 1.

Here we are using the second assumption to show how the proof works. The proof will also work
with the first assumption but we are not including that in this lecture.1 Now with the assumption
we know if x is larger than p/2 or less than p/2. In another word, if we write x as a binary sequence
then we should know the most significant bit. Next we will use this predictor to solve x completely,
but before that we first introduce some useful facts in number theory:

Fact (1). Fermat’s Little Theorem (gx)p−1 ≡ 1 mod p

Fact (2). If (gx)(p−1)/2 ≡ 1 mod p, then x is even.

Fact (3). There are two roots for gx in the group defined on Zp and the operation mod p, one is
gx/2 and the other is gx/2+(p−1)/2, which can be verified easily using fact 1.

Fact (4). There exists an efficient algorithm which gives us a root for gx but it doesn’t tell which
one it is.2

Now we will write the proof in steps:

1It is possible to improve or amplify the adversary’s success at predicting B(x). This allows the predictor to
be correct with probability almost 1. The adversary always succeeding 1 is qualitatively different. However, this
difference is not crucial for the proof to succeed. We note that the ability to amplify the adversary is dependent on
the form of the adversary and is not always possible.

2One such algorithm is Cipolla’s algorithm: https://en.wikipedia.org/wiki/Cipolla\%27s_algorithm
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1. Check if (gx)(p−1)/2 ≡ 1 mod p, if x is odd, then set y = gx/g. In another word, if x is odd,
replace x by x− 1 thus we can deliver it to our efficient algorithm to compute root.

2. Use our efficient algorithm to compute a root z for gx. z is either gx/2 or gx/2+(p−1)/2. Then
use our predictor on z. Recall that our predictor can predict if the exponent is larger than
p/2, and clearly we have x/2 < p/2 and x/2 + (p− 1)/2 ≥ p/2. Thus we can distinguish z.

3. If z = gx/2+(p−1)/2, then set z′ = z · g(p−1)/2. Then z′ = gx/2+p−1 ≡ gx/2 mod p because gp−1

has an inverse.

4. So far, we have successfully predicted the highest bit of x and shifted x by one bit (by
computing x/2), then we go back to step 1 and predict the next bit, until we got the entire
sequence of x.

Run time: Now we already showed we can figure out x if there exists a predictor which can predict
B(x), we also need to show this solution is efficient(polynomial). There are three types of major
operations: 1) modular exponent calculation 2) our efficient algorithm to find root 3) recursive
calls. The fact is operation 1) and 2) are both polynomial, and for recursive calls, we know the
maximum number of calls is the length of sequence x, which is polynomial bounded, using the fact
the multiplication of two polynomials is still a polynomial, we conclude that our approach runs in
polynomial time.

2.2 Proof of part 2

Since we already proved part 1, we can modify our assumption a little bit. Now we assume B(x)
is hard to predict instead of assume discrete log problem is hard to solve.

Goal: Show that G is secure with the assumption B(x) is hard to predict.

We will use contradiction to prove part 2. Recall the sequence we have is B(xm)B(xm−1) . . . B(x),
we first assume there is a bit predictor that predicts the next bit of our sequence, then we use this
predictor to predict B(x).
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