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ABSTRACT

A shared cryptographic key enables strong authentication. Candidate sources for

creating such a shared key include biometrics and physically unclonable functions.

However, these sources come with a substantial problem: noise in repeated readings.

A fuzzy extractor produces a stable key from a noisy source. It consists of two

stages. At enrollment time, the generate algorithm produces a key from an initial

reading of the source. At authentication time, the reproduce algorithm takes a re-

peated but noisy reading of the source, yielding the same key when the two readings

are close. For many sources of practical importance, traditional fuzzy extractors

provide no meaningful security guarantee.

This dissertation improves key derivation from noisy sources. These improvements

stem from three observations about traditional fuzzy extractors.

First, the only property of a source that standard fuzzy extractors use is the

entropy in the original reading. We observe that additional structural information

about the source can facilitate key derivation.

Second, most fuzzy extractors work by first recovering the initial reading from the

noisy reading (known as a secure sketch). This approach imposes harsh limitations on

vii



the length of the derived key. We observe that it is possible to produce a consistent

key without recovering the original reading of the source.

Third, traditional fuzzy extractors provide information-theoretic security. How-

ever, security against computationally bounded adversaries is su�cient. We observe

fuzzy extractors providing computational security can overcome limitations of tradi-

tional approaches.

The above observations are supported by negative results and constructions. As

an example, we combine all three observations to construct a fuzzy extractor achieving

properties that have eluded prior approaches. The construction remains secure even

when the initial enrollment phase is repeated multiple times with noisy readings.

Furthermore, for many practical sources, reliability demands that the tolerated noise

is larger than the entropy of the original reading. The construction provides security

for sources of this type by utilizing additional source structure, producing a consistent

key without recovering the original reading, and providing computational security.
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Chapter 1

Introduction

In today’s online world, personal information is distributed among many services.

Private details such as health records, bank accounts, and private relationships are

stored online. A service storing sensitive details should authenticate a user’s iden-

tity before granting access to resources. The standard mechanism for authenticating

identity is a password shared between a user and the service.

Passwords are easy to deploy, update, and revoke. However, passwords have a

significant weakness. Ideally, passwords would consist of random characters to make

password guessing infeasible, however, there is a strong tradeo↵ between password

strength and memorability [YBAG04, WACS10]. Large-scale system compromises

have revealed large files of hashed password, allowing attackers to perform brute-

force guessing attacks against passwords [Lys]. There is strong evidence that the

average user’s password can be guessed by a determined attacker [WACS10]. The

entropy (uncertainty) of authentication information is critical.

There are two natural alternatives to passwords, something the user has or some-

thing the user is [KH11]. We collectively refer to one of these alternatives as a source.

While many sources have higher entropy than passwords, they present a new prob-

lem. Sources instantiated from physical phenomena are often noisy [Dau04, MRW02,

PRTG02, TSŠ+06]. That is, repeated readings from the same physical source are

close (according to some distance metric) but not identical.

The classic way to use a noisy source for authentication is to take an initial reading

of the source and store this reading as a template. Then subsequent readings are

accepted if they are close enough. This approach has two significant weaknesses: 1)

the original template can be stolen and used for enrollment [GRGB+12], and 2) there
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is a binary decision on access that can be manually forced to output accept [RCB03].

An alternative is to directly derive keys from noisy sources. However, when trying to

derive a stable and consistent key, noise becomes a substantial problem.

Dodis, Ostrovsky, Reyzin, and Smith [DORS08] designed fuzzy extractors to de-

rive keys from noisy sources. Let w represent an initial reading of the source and

w0 a nearby reading. A fuzzy extractor consists of two algorithms. Generate (Gen)

takes w as an input, and produces key and some helper information p. The second

algorithm Reproduce (Rep) takes a nearby reading w0 and the helper information, p.

We assume that the distance between w and w0 is at most t. Rep and Gen should

produce the same key if dis(w, w0)  t. History has shown that stored authentication

information is often compromised, so key should be cryptographically strong even if

an attacker knows the helper data p.

Bennett, Brassard, and Robert identified two crucial tasks for deriving keys from

noisy data [BBR88].1 The first, information-reconciliation removes errors from w0.

The second, privacy amplification converts w to a uniform value. Traditionally,

a fuzzy extractor uses two separate algorithms to accomplish these tasks. A se-

cure sketch [DORS08] performs information-reconciliation and a randomness extrac-

tor [NZ93] performs information-reconciliation. We call a fuzzy extractor that sepa-

rates information-reconciliation and privacy amplification the sketch-and-extract con-

struction. In this work, we concentrate on fuzzy extractors and secure sketches.2 A

secure sketch consists of two algorithms: SS takes w and produces a public value ss,

and Rec takes a nearby w0 and ss to recover w. The goal of fuzzy extractors is to

ensure that w has high entropy conditioned on ss.

1Bennett, Brassard, and Robert consider an interactive version of the problem. We discuss their
setting in Section 3.2.

2Randomness extractors have matching upper and lower bounds on the security loss: for every
extra two bits of output key, they lose one bit of security.
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Limitations of Standard Techniques Fuzzy extractors and secure sketches must

contain some information about the initial reading w in order to accept nearby w0.

We call a point w0 accepting if it is within distance t of the original reading w. A

larger t means that more w0 are accepting. For a fuzzy extractor, the adversary can

use Rep on accepting w0 to produce key. (For a secure sketch, the adversary can use

Rec on accepting w0 to obtain w.) This means if an adversary can find an accepting w0

with noticeable probability, they can learn key with noticeable probability and break

security. Key derivation becomes more di�cult as more points are accepting. This

creates a tension between the length of key and the error tolerance t.

This tension is quite strong for secure sketches. Secure sketches are closely linked

to error correcting codes.3 The syndrome of a linear code is used to compute where

errors occurred in transmission. The syndrome can also serve as a secure sketch

(Construction 3.3.5). The entropy of w conditioned on this secure sketch is at least

the starting entropy minus the length of the syndrome. Standard analysis assumes

this is the remaining entropy in w. The length of a syndrome increases as the error

tolerance t increases. This means the lower bound on the remaining entropy of w

decreases as t increases.4

This is not a limitation of this particular secure sketch. Dodis et al. show that

secure sketches are linked to the best error-correcting code containing points of

w [DORS08, Appendix C]. Upper bounds on the size of error-correcting codes trans-

late to lower bounds on entropy loss of secure sketches. Error-correcting codes have

a long and rich history, with many bounds on the best codes. All of these bounds are

translate into limitations on the best secure sketches. Most fuzzy extractors use se-

cure sketches (we discuss some exceptions in Section 1.2.1) for error correction. Fuzzy

extractors that use secure sketches also inherit these bounds.
3We provide a limited introduction to error-correcting codes in Section 2.3.2.
4If a perfect error-correcting code is used, there are distributions with a matching upper bound

on the remaining entropy. That is, there are distributions where the standard analysis is tight.
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Standard fuzzy extractors and secure sketches only take as parameters the entropy

of w and the number of errors to be corrected. However, secure sketches are connected

to the best code containing points of w. This varies widely for di↵erent sources w.

If all points of w are far apart, then correcting t errors is easy. Without information

about the distribution of w, standard secure sketches must work for all distributions

of entropy m and errors t. The worst case distribution has all points close together.

For this distribution, to recover the correct w0 from an original reading w, the value ss

must disambiguate which point w within distance t was seen. For this distribution, a

secure sketch must decrease entropy by the logarithm of the number of points within

distance t of any w0. Thus, if a secure sketch provides a guarantee for the worst

distribution, the bound on entropy loss is proportional to this quantity (in most

settings, the number of points within distance t is exponential in t).

Losses due to secure sketches (and the resulting fuzzy extractors), prevent key

derivation from many practical sources. For many sources, there are no known fuzzy

extractors that provide meaningful security. As an example, the human iris is thought

to be the strongest biometric [Dau04] and current fuzzy extractors provide no guar-

antee about the strength of a key derived from the human iris [BH09, Section 5].

1.1 Overview of Contributions

In this dissertation, we improve key derivation from noisy sources. Our improvements

derive from three lessons about how to construct fuzzy extractors. We organize this

dissertation around these lessons. We list the lessons below. Under each lesson we

list our major technical results that serve as supporting evidence.

• Incorporating structure of a noisy distribution Traditional fuzzy extrac-

tors consider the worst-case distribution with entropy m for a desired error-

tolerance t. We know more about the structure of physical sources. It may
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be possible to avoid the losses of traditional approaches by constructing fuzzy

extractors whose security analysis uses structure of a physical source beyond its

entropy. This motivates us to modify the definition of fuzzy-extractors to work

for limited family of distributions rather than all distributions with entropy

m. We describe a precise measure of a noisy distribution’s suitability for key

derivation called fuzzy min-entropy. Fuzzy min-entropy is a necessary condition

for key derivation (Proposition 4.1.2).

– Theorem 4.2.7: Fuzzy min-entropy is su�cient for security if a distribution

is known exactly. This motivates fuzzy min-entropy as the right measure of

a distribution’s suitability. Furthermore, it shows that precise knowledge

of a source’s distribution allows key derivation.

– Theorems 4.3.1 and 4.4.1: Unfortunately, it is imprudent to assume that

high entropy distributions are known precisely. This uncertainty is handled

by providing security for a family of distributions. We show there are

families of distributions (where each distribution has fuzzy min-entropy)

that no information-theoretic secure sketch or fuzzy extractor can provide

meaningful security for most members of the family. This shows that

uncertainty of a source’s distribution comes at a cost to security.

• Look beyond sketch-then-extract Secure sketches are subject to consid-

erably stronger negative results than fuzzy extractors. We provide additional

negative results for computationally secure versions of secure sketches. We then

construct improved fuzzy extractors that do not use secure sketches.

– Corollary 5.1.5: Computational definitions of secure sketches are subject to

upper bounds on remaining entropy. If computational secure sketches are

defined using pseudoentropy, they are subject to almost the same bounds
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as information-theoretic secure sketches.

– Construction 5.2.2: For many practical sources, reliability demands that

the number of tolerated error patterns is greater than the starting entropy

of the source. We call this condition more errors than entropy. Previous

approaches have provided no security for such distributions. One cannot

provide security for all such sources, restricted to a limited class of dis-

tributions is necessary (discussion in Section 1.3). We construct the first

fuzzy extractor secure for large classes of distributions with more errors

than entropy. This construction does not use a secure sketch.

• Leverage Computational Security Fuzzy extractors were defined with infor-

mation theoretic security due to the use of information-theoretic tools. However,

there is no compelling need for information-theoretic security. Fuzzy extractors

can be improved by providing computational security. We provide computa-

tional constructions with new features. All of our constructions are for the

Hamming metric (the number of symbols that di↵er between strings w and w0).

– Construction 6.1.1: A computational fuzzy extractor whose key is as long

as the input entropy.

– Construction 7.1.1: A computational fuzzy extractor that allows a source

to be securely enrolled across multiple services. This is known as a reusable

fuzzy extractor (see Definition 3.3.9).5

– Construction 7.2.3: A computational fuzzy extractor that improves on the

class of sources and error tolerance of the previous construction. These

improvements come at a cost of a large symbol size in w.

5The work of [Boy04] contains some limited positive results on reusable fuzzy extractors. We
discuss these in Section 1.4.2.
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1.1.1 Organization

The results in this dissertation are drawn from three works [FMR13, CFP+14, FRS14].

We cover preliminaries and common notation in Chapter 2. We discuss key derivation

from noisy sources and fuzzy extractors in Chapter 3. We organize this dissertation

by the lessons: incorporating structure of a noisy source (Section 1.2, technical results

in Chapter 4), moving away from sketch-then-extract (Section 1.3, technical results

in Chapter 5), and providing computational security (Section 1.4, technical results in

Chapters 6 and 7).

1.2 Incorporating Structure of a Noisy Distribution

The goal of this section is to more precisely characterize the quality of a noisy dis-

tribution for key derivation. We begin by introducing a new notion that describes a

noisy distribution’s suitability for key derivation. The technical results described in

this section can be found in Chapter 4.

Fuzzy Min-Entropy Usually, fuzzy extractors only take as parameters the entropy

m of a source and desired error tolerance t. However, this ignores crucial structural

information about the distribution W . The number and weight of points contained in

neighborhoods of W is crucial for key derivation. We introduce a new entropy notion

that combines entropy and error tolerance into a single measure. It measures a noisy

distribution’s suitability for key derivation.

Consider an adversary that tries to guess values w0 close to the original reading

w (without considering the helper string). If an adversary is able to guess some w0

within distance t of the original reading w, they can subvert the security of key by

running Rep. To have the maximum chance that w0 is within distance t of w, the

adversary would want to maximize the total probability mass of W within the ball
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Bt(w0) of radius t around w0. We therefore define fuzzy min-entropy

Hfuzz

t,1
(W )

def
= � log max

w0
Pr[W 2 Bt(w

0)].

Observe that this quantity can be bounded in terms of min-entropy: H1(W ) �

Hfuzz

t,1
(W ) � H1(W )� log |Bt|.

Super-logarithmic fuzzy min-entropy is necessary for nontrivial key extraction

(Proposition 4.1.2). However, existing constructions do not measure their security in

terms of fuzzy min-entropy; instead, their security is shown to be H1(W ) minus some

loss that is at least log |Bt| due to error-tolerance. Since H1(W )�log |Bt|  Hfuzz

t,1
(W ),

it is natural to ask whether this loss is necessary. This question is particularly relevant

when the gap between the two sides of the inequality is high. As an example, iris scans

appear to have significant Hfuzz

t,1
(W ) (because iris scans for di↵erent people appear to

be well-spread in the metric space [Dau06]) but negative H1(W ) � log |Bt| [BH09,

Section 5].6 We therefore ask: is fuzzy min-entropy su�cient for fuzzy extraction?

There is evidence that it may be when the security requirement is computational

rather than information-theoretic—see Section 1.2.2.

Tight Characterization for the Case of a Known Distribution We show

that for every source W with super-logarithmic Hfuzz

t,1
(W ), it is possible to construct

a fuzzy extractor with a super-logarithmic length key (Corollary 4.2.8). We thus show

that Hfuzz

t,1
(W ) is a necessary and su�cient condition for building a fuzzy extractor

for a known distribution W . It is important to emphasize that these constructions

incorporate the knowledge of the complete distribution of W (and, in particular, they

are not polynomial-time).

A number of previous works in this known-distribution setting have provided

6When H1(W ) � log |Bt| is negative we say a source has more errors than entropy. We discuss
this condition further in Section 1.3.
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e�cient algorithms and tight bounds for specific distributions—generally the uniform

distribution or i.i.d. sequences (for example, [JW99, LT03, TG04, HAD06, WRDI12,

IW12]). Our characterization may be seen as unifying previous work, and justifies

using Hfuzz

t,1
(W ) as the measure of the quality of a noisy distribution, rather than

cruder measures such as H1(W )� log |Bt|.

Impossibility of Fuzzy Extractors for Families of Distributions Assuming

full knowledge of a distribution is often unrealistic. Indeed, high-entropy distributions

can never be fully observed directly and must therefore be modeled. It is imprudent to

assume that the designer’s model of a distribution is completely accurate—the adver-

sary, with greater resources, would likely be able to build a better model. Therefore,

fuzzy extractor designs cannot usually be tailored to one particular source. Existing

designs work for a family of sources (for example, all sources of min-entropy at least

m with at most t errors). Thus, the design is fixed before the distribution is fully

known, and the adversary may know more about the distribution than the designer

of the fuzzy extractor.

We show that this extra adversarial knowledge can be devastating (Theorem 4.4.1).

Specifically, we describe a family of distributions W and show that not even a

2-bit fuzzy extractor can be secure for most distributions in W . We emphasize

that each distribution W 2 W has super-logarithmic fuzzy min-entropy—in fact,

Hfuzz

t,1
(W ) = H1(W ), because all points in W are distance at least t apart. This

result shows that distributional uncertainty is a real obstacle to key derivation from

noisy sources. Our proof relies on high dimensionality of W and on perfect correctness

of the Rep procedure.

Stronger Results for Secure Sketches As described above, fuzzy extractors

often use secure sketches to perform information reconciliation (mapping w0 back to
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w).

We show comparable, but stronger, results for secure sketches. Namely, we show

in Corollary 4.2.8 that secure sketches are possible if the distribution W is precisely

known. (In fact, we obtain our fuzzy extractors for the case of a known distribution

from this result by applying a randomness extractor.)

On the other hand, there is a family of sources with super-logarithmic Hfuzz

t,1
(W ) =

H1(W ) for which no secure sketch correcting even a few errors is possible (Theorem

4.3.1). The impossibility result applies even when Rec is allowed to be incorrect with

probability up to 1/4 (as opposed to our fuzzy extractor impossibility result).

1.2.1 Techniques

Techniques for Positive Results for Known Distributions We now explain

how to construct a secure sketch for an arbitrary known distribution W . We be-

gin with distributions in which all points in the support have the same probability

(so-called “flat” distributions). Consider some subsequent reading w0. To achieve

correctness, the sketch algorithm must disambiguate which point w 2 W within dis-

tance t of w0 was sketched. Disambiguating multiple points can be accomplished by

universal hashing, as long as the size of hash output space is slightly greater than the

number of possible points. Thus, our sketch is computed via a universal hash of w.

To determine the length of that sketch, consider the heaviest (according to W ) ball

of radius t. Because the distribution is flat, it is also the ball with the most points

of nonzero probability. Thus, the length of the sketch needs to be slightly greater

than the logarithm of the number of non-zero probability points in that ball. Since

Hfuzz

t,1
(W ) is determined by the weight of that ball, the number of points cannot be

too high and there will be entropy left after the sketch is published.

For an arbitrary distribution, we cannot a↵ord to disambiguate points in the ball

with the greatest number of points, because there could be too many low-probability
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points in a single ball despite a high Hfuzz

t,1
(W ). We solve this problem by splitting the

arbitrary distribution into a number of nearly flat distributions we call “levels.” We

then write down, as part of the sketch, the level of the original reading w and apply

the above construction considering only points in that level. We call this construction

leveled hashing.

Techniques for Negative Results for Distribution Families We construct

a family of distributions W and prove impossibility for a uniformly random W 2

W (instead of proving impossibility for a worst-case W ). We start by observing

the following asymmetry: Gen sees only the sample w (obtained via W  W and

w  W ), while the adversary knows W . To exploit the asymmetry, we construct

W so that conditioning on the knowledge of W reduces the distribution to a single

a�ne line, but conditioning on w leaves the rest of the distribution uniform on a large

fraction of the entire space.

Then we show how the adversary can exploit the knowledge of the a�ne line

to reduce the uncertainty about w (in the secure sketch case) or key (in the fuzzy

extractor case). In the secure sketch case, ss can be used to find fixed points of

Rec(·, ss) which, by the correctness requirement of the sketch, must be separated by

minimum distance t. This means there aren’t too many of them, so few can lie on an

average line, permitting the adversary to guess one easily.

In the fuzzy extractor case, the nonsecret value p partitions the metric space

into regions that produce a consistent value under Rep (preimages of each key under

Rep(·, p)). For each of these regions, the adversary knows that possible w lie t-far

from the boundary of the region. However, in the Hamming space, the vast ma-

jority of points lie near the boundary (this follows by combining the isoperimetric

inequality [Har66] showing that the ball has the smallest boundary and Hoe↵ding’s

inequality [Hoe63] for bounding the volume that is t-away from this boundary). This
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allows the adversary to rule out so many possible w that, combined with the adver-

sarial knowledge of the a�ne line, many regions become empty, leaving key far from

uniform.

The result for fuzzy extractors is delicate. It uses the fact that p partitions the

space into nonoverlapping regions, which is implied by perfect correctness. Extending

this result to imperfect correctness seems challenging and is an interesting open prob-

lem. It also uses the fact that there are few points far from the boundary of every

region, which is implied by the geometry of the high-dimensional Hamming space.

This fact seems crucial: in contrast, in low-dimensional Euclidean space, which does

not have this property, a single fuzzy extractor can work for any distribution with

su�cient Hfuzz

t,1
. (Such a construction would use quantization or tiling, similar to, for

example, [CK03, LT03, CZC04, LC06, BDH+10, VTO+10]. Each sample from W

would map to the “tile” containing it, from which the output key would be extracted.

A randomly chosen quantizer would have the property that few samples lie near the

boundary, giving almost-perfect correctness; if perfect correctness is desired, we can

give up on security for those rare samples and simply use a special value of p to

indicate that one of them was the input.)

1.2.2 Related Settings

Other settings with close readings: Hfuzz

t,1
is su�cient The security defini-

tion of fuzzy extractors and secure sketches can be weakened to protect only against

computationally bounded adversaries [FMR13]. In this computational setting, fuzzy

extractors and secure sketches can be constructed for the family of all distributions

W with super-logarithmic Hfuzz

t,1
by using virtual grey-box obfuscation for all cir-

cuits [BCKP14]. The construction places into p the obfuscated program for testing

proximity to w and outputting the appropriate value if the test passes. In addition

to relying on strong assumptions for security (namely, the existence of semantically-
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secure multilinear maps), this construction is not of practical e�ciency. Note that if

this construction is used for a secure sketch, W will remain unpredictable conditioned

on p, but will not have pseudoentropy (see Section 5.1.3 for details).

Furthermore, the functional definition of fuzzy extractors and secure sketches can

be weakened to permit interaction between the party having w and the party having w0

(we discuss this setting in Section 3.2). Such a weakening is useful for secure remote

authentication [BDK+05]. When both interaction and computational assumptions

are allowed, secure two-party computation can produce a key that will be secure

whenever the distribution W has fuzzy min-entropy. The two-party computation

protocol needs to be secure without assuming authenticated channels; it can be built

under the assumptions that collision-resistant hash functions and enhanced trapdoor

permutations exist [BCL+11].

Correlated rather than close readings A di↵erent model for the problem of

key derivation from noisy sources does not explicitly consider the distance between

w and w0, but rather views w and w0 as samples drawn from a correlated pair of

random variables. This model is considered in multiple works, including [Wyn75,

CK78, AC93, Mau93]; recent characterizations of when key derivation is possible in

this model include [RW05] and [TW14]. We discuss this model in Section 3.1.

1.3 Looking Beyond Sketch-then-Extract

Secure sketches have significantly stronger results in the information-theoretic setting

than fuzzy extractors. This is because secure sketches must precisely reproduce the

original reading w while fuzzy extractors only need to produce a consistent value. In

this section, we provide additional negative results on secure sketches, describe how

to avoid secure sketches, and then describe a fuzzy extractor achieving a condition

that has eluded secure sketches. We describe technical results in Chapter 5.
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Computational secure sketches are also limited We ask whether negative

results on secure sketches can be overcome by relaxing the definition to provide com-

putational security (in Section 5.1). Recall, a secure sketch produces a public value

ss used to reconstruct the original reading w. The traditional secrecy requirement

is that w has high min-entropy conditioned on ss. This allows the fuzzy extractor

of [DORS08] to form key by applying a randomness extractor [NZ93] to w, because

randomness extractors produce random strings from strings with conditional min-

entropy.

The most natural relaxation of the min-entropy requirement of the secure sketch is

to require HILL entropy [HILL99] (namely, that the distribution of w conditioned on

ss be indistinguishable from a high min-entropy distribution). Under this definition,

we could still use a randomness extractor to obtain key from w, because it would yield

a pseudorandom key. Unfortunately, it is unlikely that such a relaxation will yield

fruitful results: we prove in Theorem 5.1.3 that the entropy loss of such secure sketches

is subject to the same coding bounds as the ones that constrain information-theoretic

secure sketches.

Another possible relaxation is to require that the value w is unpredictable condi-

tioned on ss. This definition would also allow the use of a randomness extractor to

get a pseudorandom key, although it would have to be a special extractor—one that

has a reconstruction procedure (see [HLR07, Lemma 6]). We show a significantly

weaker negative result for unpredictability entropy: we prove in Theorem 5.1.8 that

the unpredictability is at most log the size of the metric space minus log the volume

of the ball of radius t. For nearly uniform sources of w over the Hamming metric, this

bound matches the best information-theoretic security sketches. However, for lower

entropy sources this bound is not meaningful. Indeed, the result of [BCKP14] can be

seen as constructing unpredictability secure sketches for all distributions with fuzzy
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min-entropy.

Constructing Fuzzy Extractors without Sketches Our negative results arise

because Rec function acts as an error-correcting code for points of indistinguishable

distributions. It is possible to avoid these negative results by outputting a fresh

random variable.7 Such an algorithm is called a fuzzy conductor [KR09]. Looking

ahead, we construct information-theoretic fuzzy conductors, fuzzy conductors that

have computational security, and fuzzy extractors with computational security. Our

constructions will exploit the structure of the physical source beyond its entropy. We

now describe a condition on practical sources that necessitates the use of some type

of structure of a physical source (beyond its entropy).

More errors than entropy Fuzzy extractors and secure sketches have an inherent

tension between security and correctness guarantees. Consider a distribution with

starting entropy m and desired error tolerance t. If t is high enough that there are

2m points in a ball of radius t, then there exists a distribution of w of min-entropy

m contained entirely in a single ball. This distribution has no fuzzy min-entropy

and thus cannot be securely used for key derivation. Thus, if the security guarantee

of a given fuzzy extractor holds for any source of a given min-entropy m and the

correctness guarantees holds for any t errors, then m must be greater than log |Bt|.8

If a source fails this condition, we will says that it has more errors than entropy.

Distributions with more errors than entropy may have fuzzy min-entropy.

7If some e�cient algorithm can invert this fresh value and recover W , the bounds of
Corollary 5.1.5 and Theorem 5.1.8 both apply. This means that we need to consider constructions
that are hard to invert (either information-theoretically or computationally).

8Fuzzy min-entropy is also a necessary condition for the computational and interactive settings
(Proposition 4.1.2). Thus, even in these relaxed settings, to achieve security for all sources of a given
entropy m and error level t, m > log |Bt|. This further motivates our first lesson to incorporate the
structure of a distribution.
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A fuzzy extractor for more errors than entropy Current techniques for build-

ing secure sketches do not work for sources with more errors than entropy, because

they lose at least log |Bt| bits of entropy regardless of the source. The negative re-

sults above show these limitations are unlikely to be overcome by secure sketches that

retain pseudoentropy.

We provide the first construction of a fuzzy extractor that can be used for large

classes of sources that have more errors than entropy (Construction 5.2.2). Our con-

struction works for Hamming errors for strings w of length � over some alphabet Z.

As argued above, our construction cannot work for all sources of a given entropy;

Our construction can correct a constant fraction of errors, but requires that a con-

stant fraction of the symbols contribute fresh entropy, even conditioned on previous

symbols (Definition 5.2.3). This type of source is a subset of all sources with fuzzy

min-entropy.

Our construction reduces the alphabet size by hashing each input symbol (which

comes from a large alphabet) into a much smaller set, so that the resulting hash value

has lower entropy deficiency. The intuition behind this approach is that it reduces

the size of Bt by reducing the alphabet size, but preserves a su�cient portion of the

input entropy. The resulting string no longer has more errors than entropy. We then

apply a standard fuzzy extractor to the resulting string.

1.4 Moving to Computational Security

In the previous two sections, we showed that fuzzy extractors can be improved by

providing security for families of distributions with additional structure (instead of all

distributions with a given entropy) and by giving up on sketch-then-extract. In this

section, we can provide further improvements by providing computational instead of

information theoretic security. We construct three fuzzy extractors with computa-
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tional security with novel properties. The first construction uses random linear codes,

the second and third constructions use point obfuscation. For this reason, we split

their discussion to Chapter 6 and Chapter 7 respectively. All construction in this

section are for the Hamming metric. We assume w of length � over some alphabet

Z.

1.4.1 Minimizing entropy loss

By considering this computational secrecy requirement, we construct the first fuzzy

extractor (Construction 6.1.1), where key is as long as the entropy of the source w.

Our construction uses the code-o↵set construction [JW99],[DORS08, Section 5] used

in prior work, but with two crucial di↵erences. First, key is not extracted from w

like in the sketch-and-extract approach; rather w “encrypts” key in a way that is

decryptable with the knowledge of some close w0 (this idea is similar to the way the

code-o↵set construction is presented in [JW99] as a “fuzzy commitment”). Second,

the code used is a random linear code, which allows us to use the Learning with

Errors (LWE) assumption due to Regev [Reg05, Reg10] and derive a longer key.

Specifically, we use the result of Döttling and Müller-Quade [DMQ13], which shows

the hardness of decoding random linear codes when the error vector comes from the

uniform distribution, with each coordinate ranging over a small interval. This allows

us to use w as the error vector, assuming it is uniform. We also use a result of Akavia,

Goldwasser, and Vaikuntanathan [AGV09], which says that LWE has many hardcore

bits giving us a key.

Because we use a random linear code, our decoding is limited to reconciling a

logarithmic number of di↵erences. Unfortunately, we cannot utilize the results that

improve the decoding radius through the use of trapdoors (such as [Reg05]), because in

a fuzzy extractor, there is no secret storage place for the trapdoor. If improved decod-

ing algorithms are obtained for random linear codes, they will improve error-tolerance
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of our construction. Given the hardness of decoding random linear codes [BMvT78],

we do not expect significant improvement in the error-tolerance of our construction

for general physical sources.

In Section 6.2, we are able to relax the assumption that w comes from the uniform

distribution, and instead allow w to come from a symbol-fixing source [KZ07] (each

dimension is either uniform or fixed). This relaxation follows from a result about the

hardness of LWE when samples have a fixed (and adversarially known) error vector,

which may be of independent interest (Theorem 6.2.2).

Improving Error Tolerance Construction 6.1.1 only tolerates a logarithmic num-

ber of errors. Most practical sources have substantially more errors. Subsequent to

our construction, Herder et al. improved the error-tolerance of this construction for

physical sources with an additional property [HRvD+14]. For some physical sources

it is possible to obtain a confidence vector with the subsequent reading w0. This

confidence vector indicates how likely each symbol of w0 is to contain an error. This

confidence information can greatly the error tolerance of Construction 6.1.1 (from

logarithmic number to a linear fraction of errors).9 Furthermore, Herder et al. show

that a ring oscillator physical unclonable function [SD07] produces such confidence

information. If confidence information is not available the construction of Herder

et al. reduces to our construction with logarithmic error tolerance. Finding other

physical sources with similar confidence information is an open problem.

1.4.2 Adding reusability

A desirable security property of fuzzy extractors, introduced by Boyen [Boy04], is

called reusability. This property is necessary if a user enrolls the same or correlated

values multiple times. For example, if the source is a biometric reading, the user may

9Herder et al. base their construction on the learning parity with noise problem [BKW03]. Their
approach can easily be extended to larger fields and the learning with errors problem.
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enroll the same biometric with di↵erent organizations. Each of them will get a slightly

di↵erent enrollment reading wi, and will run Gen(wi) to get key
i
and a helper value

pi. Security for each key
i
should hold even when an adversary is given all the values

p1, . . . , pq (and, in case some organizations turn out to compromised or adversarial, a

stronger security notion requires security for key
i
even in the presence of key

j
for j 6=

i). Many traditional fuzzy extractors are not reusable [Boy04, STP09, BA12, BA13].

The only previous construction of reusable fuzzy extractors [Boy04] requires very

particular relationships between wi values, which are unlikely to hold in any practical

source.

A reusable fuzzy extractor against strong correlation We construct a com-

putational fuzzy extractor with strong reusability. Security holds even if the multi-

ple readings wi used in Gen are arbitrarily correlated, as long as each wi individually

comes from an allowed distribution. The construction is secure for distributions where

sampling of symbols produces a high entropy output, such as those with k-wise in-

dependence among symbols for super-logarithmic k. We note that this construction

also handles sources with more errors than entropy (discussed in Section 1.3). This

construction requires that the fraction of errors is sub-constant. We note this con-

struction requires each symbol of the source to contribute fresh entropy.

Approach Our reusable construction is based on obfuscated digital lockers [CD08].

Digital lockers output a secret value only when given the correct input to “unlock” the

secret. An obfuscated digital locker does not provide information about the locked

value or how to unlock it. The main idea of the construction is to pick a random key

and lock key in a digital locker that is unlocked by a random subset of the symbols of

w. To tolerate errors in the input, this process is repeated several times, so that at

least one digital locker can be unlocked using w0. We use obfuscation in a way that
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does not leak partial information; this is crucial to arguing reusability.

1.4.3 Allowing correlated symbols

Our final construction addresses weaknesses in the previous construction. Construc-

tion 7.2.3 removes the need for fresh entropy in the symbols and allows a constant

fraction of symbols of errors, at the cost of requiring a large alphabet size (super-

polynomial in the security parameter). It is secure if symbols in w each have individ-

ual super-logarithmic min-entropy, even if they are arbitrarily correlated. Moreover, a

constant fraction of symbols in w may have little or no entropy, as long as knowledge

of their values does not reduce the entropy of the high-entropy symbols too much (see

Definition 7.1.6).

Approach Our construction that allows correlated symbols tolerates more errors

than the second because it uses digital lockers that are unlocked by single symbols

of w. Since we do not assume that every symbol has high individual entropy, hiding

all of key in every locker then becomes too risky, Instead, we hide a single bit per

locker. To tolerate errors, these bits come from an error correcting code. To ensure

an adversary who learns some bits doesn’t learn anything useful about key, we don’t

encode key in the error-correcting code, but rather extract key (using an information-

theoretic [NZ93] or computational [Kra10] extractor) from the decoded string.

The Required Notion of Obfuscation Constructions 7.1.1 and 7.2.3 use sim-

ulation secure obfuscation of digital lockers, however, we do not require full-fledged

virtual black-box obfuscation [BGI+01]. Instead, we rely on the relaxed notion of

virtual grey-box obfuscation [BC10]. We also require that the obfuscation remains

secure even when several digital lockers of correlated points are composed. Bitan-

ski and Canetti constructed composable digital lockers with virtual grey-box security
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under particular number-theoretic assumptions [BC10]. Recent work of Brzuska and

Mittelbach shows that if indistinguishability obfuscation exists then it is not possible

to build composable virtual black-box digital lockers [BM14]. Thus, our use of virtual

grey-box obfuscation is crucial.

Connection to General Obfuscation As described in Section 1.2.2, fuzzy extrac-

tors for all sources with fuzzy min-entropy can be trivially constructed from virtual

grey-box obfuscation for all circuits [BCKP14]. The security of their construction

is based on the strong assumption of semantically secure graded encodings [PST14].

The construction is based on multilinear encoding and is highly impractical. Our con-

structions use obfuscated digital lockers. Obfuscated digital lockers are instantiable

under significantly weaker assumptions and can be implemented quite e�ciently. Ad-

ditionally, the known obfuscation for proximity point programs is not known to be

composable and therefore does not yield a reusable fuzzy extractor.
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Chapter 2

Preliminaries

Let x 2 X denote an element x in the support of X. Let x  X be the process

of a sampling x from the distribution X. Un is a random variable with the uniform

distribution over {0, 1}n. Let SD(X, Y ) be the statistical distance between random

variables X, Y drawn from a set �, defined as SD(X, Y ) = 1

2

P
x2�

|Pr(X = x) �

Pr(Y = x)|. We consider randomized distinguishers that output a single bit. Given

a circuit D, define the computational distance �D between X and Y as �D(X, Y ) =

|E[D(X)] � E[D(Y )]|. For a circuit D, we use |D| to denote its size. For a class

of distinguishers, Ds, each of size at most s, we write �Ds = maxD2Ds �D(X, Y ) =

|E[D(X)] � E[D(Y )]|. For a probability distribution X, let supp(X) denote the set

of points with nonzero probability. Let H0(X) denote the logarithm of the support

size of X, that is H0(X) = log | supp(X)|. We use an average case notion of remaining

support size H̃0(X|P ) = log(Ep2P | supp(X|P = p)|). All logarithms without a base

are considered base 2, that is, log x = log
2
x.

For a metric space (M, dis), the (closed) ball of radius t around x is the set of all

points within radius t, that is, Bt(x) = {y|dis(x, y)  t}. If the size of a ball in a metric

space does not depend on x, we denote by |Bt| the size of a ball of radius t. We consider

the Hamming metric over vectors in Z�, defined via dis(x, y) = {i|xi 6= yi}. For this

metric, |Bt| =
P

t

i=0

�
�

i

�
(|Z|� 1)i. For a vector w over F�, let Wgt(w) = {i|wi 6= 0}.

Usually, we use capitalized letters for random variables and corresponding low-

ercase letters for their samples. We frequently use standard order notation (see

[CLRS01]).
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2.1 Entropy and Extraction

We begin introduction standard entropy and extraction notions.

2.1.1 Min-Entropy

We begin with the standard notion of min-entropy and proceed to computational

notions.

Definition 2.1.1. A distribution X has min-entropy at least m, denoted H1(X) � m

if

8x 2 X, Pr[X = x]  2�m.

We use the average case notion of min-entropy defined by [DORS08].

Definition 2.1.2 ([DORS08]). Let (X, Y ) be a pair of random variables. The average

min-entropy of X conditioned on Y is defined as

H̃1(X|Y )
def
= � log[E

Y

(2�H1(X|Y ))] = � log
X

y2Y

Pr[Y = y]2�H1(X|Y =y)

2.1.2 Randomness Extractors

A randomness extractor takes a distribution X of (average) min-entropy m, and with

the help of a uniform string called the seed, “extracts” the randomness contained in

X and outputs a string of length  that is almost uniform even given the seed.1

Definition 2.1.3 ([NZ93]). Let M, � be finite sets. A function ext : M ! {0, 1}

a (m̃, ✏)-average case extractor if for all pairs of random variables X, Y over M, �

such that H̃1(X|Y ) � m̃, we have SD((ext(X, Ud), Ud, Y ), U ⇥ Ud ⇥ Y )  ✏.

2.2 Computational Tools

We now describe computational notions of entropy. Our computational notions of

entropy have two additional parameters: circuit size s and quality ✏. Larger s and

1In all of our definitions of extractors we assume the extractor outputs its seed. We omit this
from the function definition but all security definitions take in the d-bit seed.
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smaller ✏ mean “better” entropy.

2.2.1 Computational Entropy

We use the average case notion [HLR07] of HILL entropy [HILL99].

Definition 2.2.1. A joint distribution X|Y has conditional HILL entropy at least

m, denoted HHILL

✏,s
(X) � m if there exists a distribution Z where H̃1(Z|Y ) � m, such

that �Ds((X, Y ), (Z, Y ))  ✏.

HILL entropy is a commonly used computational notion of entropy. It was extended to

the conditional case by Hsiao, Lu, Reyzin [HLR07]. Here we recall a weaker definition

due to Gentry and Wichs [GW11] (the term relaxed HILL entropy was introduced

in [Rey11]).

Definition 2.2.2. Let (X, Y ) be a pair of random variables. W has relaxed HILL

entropy at least m conditioned on S, denoted HHILL-rlx

✏,s
(X|Y ) � m if there exists a

joint distribution (X 0, Y 0), such that H̃1(X 0|Y 0) � m and �Ds((X, Y ), (X 0, Y 0))  ✏.

However, HILL entropy is a strong notion. We also consider a significantly weaker

version where the value of X is hard to guess given public state. We use the definition

of conditional unpredictability entropy [HLR07, Definition 7], which captures the

notion of “hard to guess” (we relax the definition slightly, similarly to the relaxation

of HILL entropy above).

Definition 2.2.3. Let (X, Y ) be a pair of random variables. X has relaxed unpre-

dictability entropy at least m conditioned on Y , denoted by Hunp-rlx

✏,s
(X|Y ) � m, if

there exists a pair of distributions (X 0, Y 0) such that �Ds((X, Y ), (X 0, Y 0))  ✏, and

for all circuits I of size s,

Pr[I(Y 0) = X 0]  2�m.

2.2.2 Extracting from Computational Entropy

Extractors can be applied to distributions with HILL entropy to obtain pseudoran-

dom, rather than random, outputs: that is, outputs that are computationally indis-
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tinguishable from, rather than statistically close to, uniformly random strings. We

include a proof to provide intuition for manipulating computational entropy (a similar

version of this theorem appeared in [FR12]).

Theorem 2.2.4. Let ext : M⇥{0, 1}d
! {0, 1} be a (m̃, ✏ext)-extractor, computable

by circuits of size sext. Let X, Y be a distribution over � with HHILL-rlx

✏HILL,sHILL
(X|Y ) � m̃.

Then 8D 2 Ds0, where s0 ⇡ sHILL � sext,

�D((ext(X, Ud), Y, Ud), Um ⇥ Y ⇥ Ud)  ✏ext + ✏HILL .

Proof. We proceed by contradiction. Suppose not, that is, 9D 2 Ds0 such that

�D((ext(X, Ud), Y, Ud), (U ⇥ Y ⇥ Ud)) > ✏ext + ✏HILL.

We use D to construct a distinguisher D0 to distinguish X, Y from all distributions

X 0, Y 0 where H̃1(X 0|Y 0) � m̃, violating the HILL-rlx entropy of X|Y . We define

D0 as follows: upon receiving input ↵ 2 M, � 2 �, D0 samples seed  Ud, runs

⌘  ext(↵, seed) and then runs D(⌘, �, seed) on the result. Note that D0 2 Ds where

s ⇡ s0 + sext = sHILL. Thus we have the following 8X 0, Y 0, where H1(X 0|Y 0) � m̃:

�D
0
(X, Y ), (X 0, Y 0)) = �D((ext(X, Ud), Y, Ud), (ext(X

0, Ud), Y
0, Ud))

� �D((ext(X, Ud), Y, Ud), (U ⇥ Y ⇥ Ud))

� �D((ext(X 0, Ud), Y
0, U)⇥ U ⇥ Y 0 ⇥ Ud)

> ✏ext + ✏HILL � ✏ext = ✏HILL

Thus D0 is able to distinguish X|Y from all X 0|Y 0 with su�cient entropy. This is a

contradiction.

When working with computational entropy, there is no reason to use an information-

theoretic randomness extractor. A computational extractor [Kra10] is the adaption

of a randomness extractor to the computational setting. Any information-theoretic

randomness extractor is also a computational extractor; however, unlike information-

theoretic extractors, computational extractors can expand their output via pseudo-

random generators once a long-enough output is obtained. We adapt the definition
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of Krawczyk [Kra10] to the average case:

Definition 2.2.5. A function cext : M! {0, 1} a (m̃, ✏sec, ssec)-average-case com-

putational extractor if for all pairs of random variables X, Y (with X over M) such

that H̃1(X|Y ) � m̃, we have �Dssec ((cext(X; Ud), Ud, Y ), U ⇥ Ud ⇥ Y )  ✏sec.

Computational extractors also work when given HILL entropy. The proof is the same

as the proof of Theorem 2.2.4 and is omitted.

Extracting from unpredictability entropy Standard extractors cannot extract

from distributions with unpredictability entropy. This requires a special type of ex-

tractor with a reconstruction. The best known example of a reconstructive extractor

is the Goldreich-Levin hardcore bit [GL89].

Definition 2.2.6 (Reconstruction procedure). An (, ✏)-reconstruction for a function

ext : M ! {0, 1} is a pair of machines Compress and Decomp, where Compress :

� ! {0, 1} is a randomized Turing machine, and Decomp(·) : {0, 1}
! M is a

randomized oracle Turing machine which runs in time polynomial in log |M|. Fur-

thermore, for every x and T , if |Pr[T (ext(x, Ud)) = 1]�Pr[T (Um⇥Ud) = 1]| > ✏, then

Pr[DecompT (CompressT (x)) = x] > 1/2 (the probability is over the random choices of

Compress and Decomp).

Lemma 2.2.7. [HLR07, Lemma 6] Let X, Y be random variables with Hunp

✏,s
(X|Y ) �

m̃, and let ext be an extractor with a (k�log 1

✏
, ✏)-reconstruction (Compress, Decomp).

Then

�Ds0 ((ext(X, Ud), Y, Ud), (U ⇥ Y ⇥ Ud))  5✏,

where s0 = s/(|Compress|+ |Decomp|).

2.3 Coding Theory

Definition 2.3.1. The t-neighborhood of c, denoted Neigh
t
(c), is the set of all points

distance t from c. That is Neigh
t
(c) = {c0|dis(c, c0) = t}.

2.3.1 Shannon Codes

We use the definition of a Shannon code [SWBH49]:
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Definition 2.3.2. Let C be a set over space M. We say that C is an (t, �)-Shannon

code if there exists a procedure Rec such that for all t0  t and for all c 2 C, Pr[c0  

Neigh
t0(c) ^ Rec(c0) 6= c]  �. To distinguish it from the average-error Shannon code

defined below, we will sometimes call it a maximal-error Shannon code.

This is a slightly stronger formulation than usual, in that for every size t0 < t we

require the code to correct t0 random errors.2 Shannon codes work for all codewords.

We can also consider a formulation that works for an “average” codeword.

Definition 2.3.3. Let C be a distribution over space M. We say that C is an (t, ✏)-

average error Shannon code if there exists an e�cient procedure Rec such that for all

t0  t Prc C [Rec(Neigh
t0(c)) 6= c]  ✏.

An average error Shannon code is one whose average probability of error is bounded

by ✏. See [CT06, Pages 192-194] for definitions of average and maximal error prob-

ability. An average-error Shannon code is convertible to a maximal-error Shannon

code with a small loss. We use the following pruning argument from [CT06, Pages

202-204]:

Lemma 2.3.4. Let C be a (t, ✏)-average error Shannon code with recovery procedure

Rec such that H1(C) � m. There is a set C 0 with |C 0| � 2m�1 that is a (t, 2✏)-(maximal

error) Shannon code with recovery procedure Rec.

Proof. Let C be the (t, ✏)-average error Shannon code with recovery procedure Rec

such that H1(C) � m. Then for all t0  t

X

c2C

Pr[C = c] Pr[c0  Neigh(c, t0) ^ Rec(c0) 6= c]  ✏.

For c denote by ✏c = Pr[c0  Neigh(c, t0)^Rec(c0) 6= c]. Then by Markov’s inequality:

Pr
c2C

[✏c  2 E
c C

[✏c]] = Pr
c2C

[✏c  2✏] �
1

2
2In the standard formulation, the code must correct a random error of size up to t, which may

not imply that it can correct a random error of a much smaller size t0, because the volume of the
ball of size t0 may be negligible compared to the volume of the ball of size t. For codes that are
monotone (if decoding succeeds on a set of errors, it succeeds on all subsets), these formulations
are equivalent. However, we will work with an arbitrary recover functionality that is not necessarily
monotone.
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Let C 0 denote the of set all c 2 C where ✏c  2✏. Note that Prc C [c 2 C 0] � 1/2.

Since H1(C) � m, we know |C 0| � 2m�1 (otherwise Prc C [c 2 C 0] =
P

c2C0 Pr[C = c]

would be less than 2m�1 1

2m = 1/2). This completes the proof of the Lemma 2.3.4.

2.3.2 Hamming Codes

Definition 2.3.5 (Minimum distance). Let C be a set. The minimum distance of C

is minc,c02C dis(c, c0).

Definition 2.3.6 (Error-correcting code). A set C is an (Z�, |C|, d)-error-correcting

code if its minimum distance is at least d. The elements c 2 C are known as code-

words.

If a message c is transmitted and at most t = bd�1

2
c of the symbols of c are modified,

it is possible to uniquely recover the transmitted message c. A code is e�cient if

there exist polynomial time algorithms that sample c C and Dec(c⇤) that finds the

unique c 2 C such that dis(c, c⇤)  t if one exists. Many error-correcting codes have

additional properties that facilitate encoding and decoding.

Linear error-correcting codes Let Z = Fq for some field Fq.

Definition 2.3.7. A code C is a (F�

q
, Fk

q
, d)-linear code if is a k-dimensional linear

subspace of F�

q
with minimum distance d.

Linear codes have two associated matrices G and H, known as the generating matrix

and the parity check matrix respectively.

Definition 2.3.8 (Generating Matrix). For any (F�

q
, Fk

q
, d)-linear code C there exists

a matrix G 2 F�⇥k

q
where span(G) = C.

Sampling a random x 2 Fk

q
and computing Gx is an e�cient encoding function for

C. Recall that the kernel, or ker, of a matrix is the set of all vectors that map to the

0 vector.

Definition 2.3.9 (Parity Check Matrix). For any (F�

q
, Fk

q
, d)-linear code C there

exists a matrix H 2 F(��k)⇥�

q such that ker(H) = C.
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Fix some c 2 C, an important property of H is that for any c⇤ such that dis(c, c⇤)  t,

the value Hc⇤ is unique. We call Hc⇤ the syndrome of c⇤. Indeed, decoding usually

consists three steps:

• Compute s = Hc⇤.

• Map Hc⇤ to an error vector e 2 F�

q
where Wgt(e)  t.

• Subtract e from c⇤ to obtain c.

2.3.3 Random Linear Codes

We will use the q-ary entropy function, denoted Hq(x) and defined as Hq(x) =

x log
q
(q � 1) � x log

q
x � (1 � x) log

q
(1 � x). Note that H2(x) = �x log x � (1 �

x) log(1� x). In the region [0, 1

2
] for any value q0 � q, Hq0(x)  Hq(x). The following

theorem is standard in coding theory:

Theorem 2.3.10. [Gur10, Theorem 8] For prime q, ⇢ 2 [0, 1�1/q), 0 < ✏ < 1�Hq(⇢)

and su�ciently large �, the following holds for µ = d(1�Hq(⇢)� ✏)�e . If A 2 F�⇥µ

q

is drawn uniformly at random, then the linear code with A as a generator matrix has

rate at least (1 � Hq(⇢) � ✏) and relative distance at least ⇢ with probability at least

1� e�⌦(�).

We use the following claim (techniques from Cooper [Coo00]):

Claim 2.3.11. Let q � 2 be a prime. Let ↵, � be integers and let let S
$
 F↵⇥(↵+�)

q

be uniformly generated. Then Pr[rank(S) = ↵] > 1� q��.

Proof. Let pi be the probability that the i-th row is linearly dependent on the previous

i � 1 rows. By the union bound, the probability that ↵ rows are linearly dependent

is bounded by
P

↵

i=1
pi. Since i � 1 rows can span a space of size at most qi�1, the

probability pi that a randomly chosen ith row is in that space is at most qi�1/q↵+�.

So

Pr[rank(S) < ↵] =
↵X

i=1

qi�1

q↵+�
=

q↵
� 1

q � 1

1

q↵+�
< q��.



30

2.4 Obfuscation

Our constructions will use obfuscation for two types of circuits: point functions and

digital lockers. The family of point functions In = {Iw}w2{0,1}n defined as follows:

Iw(x) :

8
>><

>>:

1 x = w

0 otherwise

.

and the class of digital lockers is In = {Iw,key}w2{0,1}n,key2{0,1} defined as follows:

Iw,key(x) :

8
>><

>>:

key x = w

? otherwise

.

The required notion of obfuscation is virtual grey-box (VGB) introduced in [BC10].

This notion is weaker then the standard notion of virtual black-box ([BGI+01]), as it

allows the simulator to run in unbounded time while making at a polynomial number

of oracle queries to the function.

We require that the obfuscation is composable and secure with respect to auxiliary

input. Composable auxiliary-input VGB obfuscators for point functions and digital

lockers are constructed in [BC10, Theorem 6.1] from the Strong Vector Decision

Di�e-Hellman assumption, which is a generalization of the strong DDH assumption

of [Can97] for tuples of points. They can also be constructed by assuming strong

properties of cryptographic hash functions [Can97].

Definition 2.4.1 (composable obfuscation VGB obfuscation with auxiliary input

[BC10]). A PPT algorithm O is an `-composable VGB obfuscator for In (resp. In+)

with auxiliary-input if the following conditions are met:

1. Functionality: for every n and I 2 In, O(I) is a circuit that computes the same

function as I.

2. Virtual grey-box: For every PPT adversary A and polynomial p, there exists a
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(possibly ine�cient) simulator S and a polynomial q such that for all su�ciently

large n, any sequence of circuits I1, . . . , I`
2 In, (where ` = poly(n)) and for

all auxiliary inputs z 2 {0, 1}⇤:

| Pr
A,O

[A(z,O(I1), . . . ,O(I`)) = 1]� Pr
S

[S(I
1
,...,I

`
)[q(n)](z, 1|I

1
|+|I

`
|
|) = 1]| <

1

p(n)
,

where (I1, . . . , I`)[q(n)] is an oracle that answers at most q(n) queries, and

where every query of the form (i, x) is answered by I i(x).

For notational convenience, when we use point function obfuscation, we denote

the oracle provided to the simulator as Iw(·, ·) where w = w1, ..., w� is the vector

of obfuscated points. When we use digital lockers we denote the oracle provided to

the simulator as Iw,key(·, ·) where w is the vector of obfuscated points and key is the

hidden value (we will hide the same value in each obfuscation).
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Chapter 3

Key Derivation from Noisy Sources

In this chapter, we discuss prior approaches to key derivation from noisy sources. The

term fuzzy extractors was introduced by Dodis et al. [DORS08]. There was substantial

work on key derivation from noisy sources prior to the work of Dodis et al. In the

discussion until now, we assumed a single user wished to generate key from a noisy

source (with initial reading w) and be able to regenerate key from a nearby reading w0.

In the single user setting, this task must be accomplished non-interactively, generating

key and any necessary helper information p when w is observed. At a later time key

can be regenerated from w0 and p.

In this section, we explore alternative models for key derivation from noisy sources.

We first consider a more general problem where users wish to derive keys from ar-

bitrarily correlated random variables W and W 0 (Section 3.1). Bounded distance is

one possible type of correlation between repeated readings, however not all types of

correlation can be expressed as a metric. We then return to the bounded distance

setting where two users hold w and w0 respectively and engage in an interactive pro-

tocol to derive key protocol (Section 3.2). Finally, we consider the non-interactive

setting where a single user wishes to derive key and p, and regenerate key from w0

and p (Section 3.3). In all models, there are two fundamental tasks: information-

reconciliation and privacy amplification [BBR88]. Information-reconciliation ensures

that related w and w0 are mapped to the same key (often this is done by first correcting

w0 to w). Privacy amplification ensures that key is uniformly distributed conditioned

on the adversary’s view.
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3.1 Key Derivation from Correlated Random Variables

In the introduction, we considered two readings w and w0 of a single physical source.

We assumed the two readings were close according to some metric dis. The two

readings w and w0 can be modeled as a draw of correlated random variables where for

all (w, w0) (W,W 0), dis(w, w0)  t.1 Bounded distance is just one possible way that

random variables can be correlated. Another line of work considers the problem of

key derivation from arbitrarily correlated random variables [Mau93]. In this model,

two parties Alice and Bob are able to draw from correlated random variables W and

W 0 respectively. The goal of Alice and Bob is to agree on key by discussion over

a public channel using W and W 0. There is a (passive) eavesdropper Eve that can

observes messages sent between Alice and Bob.

Maurer shows two results. First, the length of key is bounded by the mutual

information between W and W 0 [Mau93, Theorem 1]. Second, if the two parties can

make i.i.d. draws from W and W 0, then it is possible to achieve a secret key rate

approaching the mutual information [Mau93, Theorem 2]. (The secret key rate is

the average length of the secret key across independent executions of the protocol.)

When authenticating using physical sources, for parties to make i.i.d. draws from

W,W 0 they must have multiple instances of the physical source. The use of repeated

draws from W and W 0 is crucial for a secret key rate that is proportional to an

average-case information notion.2 In this setting, mutual information between W

and W 0 is a necessary and su�cient condition for key derivation.

Renner and Wolf [RW05] ask what length key is possible from a single draw of W

and W 0 using non-interactive protocols. They first consider information-reconciliation

and privacy amplification separately. They show that H1(W ) is a necessary and

1In the definition of fuzzy extractors (Definition 3.3.1), correctness is provided for all w0 within
distance t. That is, w0 is assumed to be worst case and is not modeled as a random variable.

2If only one draw is allowed, even If W = W 0, min-entropy of W is an upper bound on the
achievable secret key length.
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su�cient condition for privacy amplification.3 Second, they show that the length of

p must grow with the worst case number of possible outcomes for W conditioned on

W 0.4 That is, the length of the public value

|p| � max
w02W

log |{w|Pr[W = w|W 0 = w0] > 0}|.

Furthermore, they show there exists a protocol with this length p using optimal

encoding functions. Intuitively, the public information must describe which possible

outcome for W actually occurred. This result describes the maximal length of p

and does not argue how p e↵ects security. It may be possible to construct a p that

reduces the entropy of w by less than log |p|. In Chapter 4, we will construct schemes

with variable length p, providing information-reconciliation for distributions where

the bounds of Renner and Wolf provide no security guarantees.

Lastly, the work of Renner and Wolf shows characterize when key derivation is

possible from correlated random variables [RW05, Theorem 3]. We compare this

characterization to fuzzy min-entropy in Chapter 4.

Most work on key derivation from correlated random variable setting is highly

non-constructive. Restricting to correlation captured by a distance metric allows for

ideas from coding theory and more e�cient constructions.

3.2 The Interactive Setting

The work of Bennett, Brassard, and Robert [BBR88] introduced the problem of key

agreement from nearby values. Two parties Alice and Bob which hold W and W 0

respectively. For any outcome of the two random variables (w, w0)  (W,W 0),

3The results of Renner and Wolf use smooth notions of entropy. A random variable has smooth
entropy if it is statistically close to a distribution with true entropy. We describe their results in the
terminology of non smooth entropy.

4This result also uses a smooth notion of entropy. We describe the non smooth version for
simplicity.
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dis(w, w0)  t. Bounded distance between W and W 0 implies mutual informa-

tion between W and W 0. As in the correlated random variable case, information-

reconciliation and privacy amplification are the two fundamental tasks. Min-entropy

of W remains a necessary condition for privacy amplification. The goal of Alice and

Bob is to create key using this information and a public channel. There is good reason

to expect that interactive information-reconciliation can outperform non-interactive

information-reconciliation.

We do not attempt to survey the interactive setting. We present the Cascade

protocol to demonstrate the power of interactivity [BS94]. In this protocol, Alice and

Bob hold w 2 {0, 1}� and w0 2 {0, 1}� respectively. We give a high level synopsis of

the protocol:

1. Pass 1: Alice and Bob choose a length parameter ↵. The strings w and w0 are

split into length ↵ blocks, v1, ..., v�/↵.

2. Pass 1: Alice sends the parity of each block to Bob. For blocks where the parity

di↵ers, Alice and Bob use binary search to identify which bit(s) have errors (by

repeatedly sending parity of subblocks). This identifies and eliminates any odd

number of errors between blocks.

3. Passes 2 and up: Alice and Bob choose a length parameter ↵. They also choose

a random function from f : [1, ..., �] ! [1, ..., �/↵]. Blocks are formed by all

bits that have the same output f , that is vj = {i|f(i) = j}. Alice sends parity

of each block to Bob.

4. Passes 2 and up: Alice and Bob use binary search to correct odd number of

errors in blocks whose parity does not match.

5. Passes 2 and up: Alice and Bob use binary search on the smallest blocks vj to

see if any errors exist in that block. If so, Alice and Bob find blocks in previous
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passes that contained the position in error. These blocks must have an even

number of errors. Use binary search to find errors in those blocks.

This protocol involves several rounds and Alice and Bob send multiple messages. It

is unclear how to translate the ideas of the Cascade (and other similar) protocols to

the non-interactive setting.

3.3 Fuzzy Extractors

In this section, we define fuzzy extractors and secure sketches. Definitions and lemmas

are drawn from the work of Dodis et al. [DORS08, Sections 2.5–4.1] with modifica-

tions. First we allow for error, as discussed in [DORS08, Section 8]. Second, we

consider an arbitrary family W of distributions instead of families containing all dis-

tributions of a given min-entropy. Let M be a metric space with distance function

dis.

Definition 3.3.1. An (M,W , , t, ✏)-fuzzy extractor with error � is a pair of ran-

domized procedures, “generate” (Gen) and “reproduce” (Rep). Gen on input w 2M

outputs an extracted string key 2 {0, 1} and a helper string p 2 {0, 1}⇤. Rep takes

w0 2M and p 2 {0, 1}⇤ as inputs. (Gen, Rep) have the following properties:

1. Correctness: if dis(w, w0)  t and (key, p)  Gen(w), then Pr[Rep(w0, p) =

key] � 1� � (note that correctness holds for any w0 with probability 1� � over

the coins on Gen and Rep, but w0 cannot be a function of p).

2. Security: for any distribution W 2W, if (Key, P ) Gen(W ),

SD((Key, P ), (U, P ))  ✏.

The standard construction is sketch-and-extract: the uniform key is extracted from

w (using a randomness extractor [NZ93]) and error-tolerance is obtained by using

a secure sketch [DORS08, Lemma 4.1]. Secure sketches produce a string ss that

minimally decreases the entropy of w, while mapping nearby w0 to w:
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Definition 3.3.2. An (M,W , m̃, t)-secure sketch with error � is a pair of randomized

procedures, “sketch” (SS) and “recover” (Rec). SS on input w 2 M returns a bit

string ss 2 {0, 1}⇤. Rec takes an element w0 2M and ss 2 {0, 1}⇤. (SS, Rec) have

the following properties:

1. Correctness: 8w, w0 2M if dis(w, w0)  t then Pr[Rec(w0, SS(w)) = w] � 1� �

(as before, correctness holds for any w0 with probability 1� � over the coins of

SS and Rec, but not if w0 is a function of SS(w)).

2. Security: for any distribution W 2W, H̃1(W |SS(W )) � m̃.

The Case of Known Distribution If in the above definitions we take W to be a

one-element set containing a single distribution W , then the fuzzy extractor/secure

sketch is said to be constructed for a known distribution. In this case, we need to

require correctness only for w that have nonzero probability5.

We have no requirement that the algorithms are compact or e�cient, and so

the distribution can be fully known to them. Finding a natural model of specifying

distributions that allows for e�cient (yet generic) known distribution constructions

of sketches and extractors is an interesting problem.

From Secure Sketches to Fuzzy Extractors A fuzzy extractor can be produced

from a secure sketch and an average case randomness extractor :

Lemma 3.3.3. Assume (SS, Rec) is an (M,W , m̃, t)-secure sketch with error �,

and let ext : M ! {0, 1} be a (m̃, ✏)-average case extractor. Then the following

(Gen, Rep) is an (M,W , , t, ✏)-fuzzy extractor with error �:

• Gen(w) : generate seed  {0, 1}d, set p = (SS(w), seed), key = ext(w; seed),

and output (key, p).

• Rep(w0, (ss, seed)) : recover w = Rec(w0, ss) and output key = ext(w; seed).

5We can extend correctness to all of M by defining Gen/SS to output the point w as part of
p/ss on zero-probability inputs, which will ensure that Rep/Rec can always be correct; this does not
a↵ect security.
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3.3.1 Previous approaches

As stated above, fuzzy extractors perform information-reconciliation and privacy am-

plification non-interactively. Secure sketches perform non-interactive information-

reconciliation. In this section, we provide a brief overview of standard construc-

tions. We focus on secure sketches as most known fuzzy extractors are formed using

a secure sketch followed by a randomness extractor. Throughout this dissertation,

we focus on the Hamming metric (many of our negative results hold for arbitrary

metric spaces). Let Z be some alphabet and let w, w0 be strings over Z�, define

dis(w, w0) = {i|wi 6= w0
i
}. We use Hamming codes as described in Section 2.3.2.

The code-o↵set construction Juels and Wattenberg [JW99] constructed an ob-

ject called a fuzzy commitment scheme. The goal of a fuzzy commitment scheme

is to allow a user to decommit if they know a close value (while retaining standard

hiding properties).6 This goal is very related to a secure sketch. Let h be some hash

function and let C be an error correcting code with decoding function Dec.

Commit

1. Input: w.

2. Sample c C.

3. Compute com = h(c), c� w.

Open

1. Input: (w0, y, �)

2. Compute c0 = � + w0.

3. Decode c⇤ = Dec(c0).

4. If h(c⇤) = y output 1.

5. Else output 0.

This construction was the precursor to the code-o↵set sketch. The code-o↵set

sketch stores a public value ss = c � w that is a “one-time pad” but with c that

6We do not describe cryptographic commitment here. It was defined by Brassard, Chaum, and
Crépeau [BCC88].
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contains redundancy.

Construction 3.3.4. Let C be an e�cient (F�

q
, |C|, d)-code. Define SS, Rec as fol-

lows:

Gen(w)

1. Sample c C.

2. Compute ss = c� w.

Rec(ss, w0)

1. Compute c0 = � + w0.

2. Decode c⇤ = Dec(c0).

3. Output w⇤ = c⇤ � ss.

Then (SS, Rec) is a (F�

q
, m,m� (� � log |C|) log q, bd�1

2
c)-secure sketch.

By using linear codes the construction can be derandomized. The syndrome of a

linear code is a secure sketch:

Construction 3.3.5. Let H be the parity check matrix of a (F�

q
, Fk

q
, d)-linear code.

Then SS(w) = Hw, Rec(ss, w0) = w0 + Dec(ss) is a (F�

q
, m,m� (� � k) log q, bd�1

2
c)-

secure sketch.

3.3.2 Computational Fuzzy Extractors

Definition 3.3.6 (Computational Fuzzy Extractor). Let W be a family of proba-

bility distributions over M. A pair of randomized procedures “generate” (Gen) and

“reproduce” (Rep) is a (M,W , , t)-computational fuzzy extractor that is (✏, s)-hard

with error � if Gen and Rep satisfy Definition 3.3.1 with the security property replaced

with:

• For any distribution W 2 W, the string Key is pseudorandom conditioned on

P , that is �Ds((Key, P ), (U, P ))  ✏.

Any e�cient fuzzy extractor is also a computational fuzzy extractor. We now de-

fine a weaker object that outputs computational entropy (instead of a pseudorandom

key). We call this object a computational fuzzy conductor. It is the computational

analogue of a fuzzy conductor (introduced by Kanukurthi and Reyzin [KR09]).
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Definition 3.3.7. A pair of randomized procedures “generate” (Gen) and “reproduce”

(Rep) is an (M,W , m̃, t)-computational fuzzy conductor that is (✏, s)-hard with error

� if Gen and Rep satisfy Definition 3.3.6, except the last condition is replaced with the

following weaker condition:

• for any distribution W 2W, the string r has high HILL entropy conditioned on

P . That is HHILL

✏,s
(R|P ) � m̃.

A computational fuzzy conductor (Definition 3.3.7) can be transformed to a com-

putational fuzzy extractor (Definition 3.3.6) using a computational extractor (Defi-

nition 2.2.5).

Lemma 3.3.8. Let (Gen0, Rep0) be a (M,W , m̃, t)-computational fuzzy conductor that

is (✏cond, scond)-hard with error � and outputs in {0, 1}�. Let cext : {0, 1}�
! {0, 1}

be a (m̃, ✏ext, sext)-average case computational extractor. Define (Gen, Rep) as:

• Gen(w; seed) (where seed 2 {0, 1}d): run (r0, p0) = Gen0(w) and output r =

cext(r0; seed), p = (p0, seed).

• Rep(w0, (p0, seed)) : run r0 = Rep0(w0; p0) and output r = cext(r0; seed).

Then (Gen, Rep) is a (M,W , , t)-computational fuzzy extractor that is (✏cond+✏ext, s)-

hard with error � where s = min{scond � |cext|� d, sext}.

Proof. It su�ces to show if there is some distinguisher D of size s where

�D((cext(W ; Ud), Ud, P ), (U, Ud, P )) > ✏cond + ✏ext

then there is an distinguisher D0 of size scond such that for all Y with H̃1(Y |P 0) � m̃,

�D
0
((W,P 0), (Y, P 0)) � ✏cond.

Let D be such a distinguisher. That is,

�D((cext(W,Ud), Ud, P ), (U, Ud, P )) > ✏ext + ✏cond.

Define D0 as follows. On input (y, p0) sample seed Ud, compute key cext(y; seed),

set p = (p0, seed) and output D(key, p). Note that D0 is of size approximately
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s + |cext|+ d  scond. Then we have the following:

�D
0
((W,P 0), (Y, P 0)) = �D((cext(W,Ud), P ), cext(Y, Ud), P )

� �D
0
((cext(W,Ud), P ), (U, P ))

� �D
0
((U ⇥ P ), (cext(Y, Ud), P ))

> ✏cond + ✏ext � ✏ext = ✏cond.

Where the last line follows by noting that D is of size at most sext. Thus D0 distin-

guishes W from all Y with su�cient entropy. This is a contradiction.

3.3.3 Reusable Computational Fuzzy Extractors

An additional desirable feature of fuzzy extractors is reusability [Boy04]. It is the

ability to support multiple independent enrollments of the same value, allowing users

to reuse the same biometric or physical unclonable function, for example, with mul-

tiple noncommunicating providers. More precisely, the algorithm Gen may be run

multiple times on correlated readings w1, ..., wq of a given source. Each time, Gen will

produce a di↵erent pair of values (key
1
, p1), ..., (keyq

, pq). Security for each extracted

string key
i

should hold even in the presence of all the helper strings p1, . . . , pq (the

reproduction procedure Rep at the i-th provider still obtains only a single w0
i

close

to wi and uses a single helper string pi). Because the providers may not trust each

other, a stronger security feature (which we satisfy) ensures that each key
i
is secure

even when all key
j

for j 6= i are also given to the adversary.

Constructions of reusable fuzzy extractors depend on the types of correlations

allowed among w1, . . . , wq. Boyen [Boy04] showed how to do so when each wi is a

shift of w1 by a value that is oblivious to the value of w1 itself (formally, wi is a result

of a transitive isometry applied to w1). Boyen also showed that even for this weak

class of correlations, any secure sketch must lose at least log |Bt| entropy [Boy04,

Theorem 11].

We modify the definition of Boyen [Boy04, Definition 6] for the computational
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setting. We then compare the two definitions.

Definition 3.3.9 (Reusable Fuzzy Extractors). Let W be a family of distributions

over M. Let (Gen, Rep) be a (M,W , , t)-computational fuzzy extractor that is

(✏sec, ssec)-hard with error �. Fix some W1 2W. Let (f2, .., fq), D be a split adversary.

Define the following game for all j = 1, ..., q:

• Sampling The challenger samples w1  W1, u {0, 1}.

• Perturbation For i = 2, ..., q: the challenger computes (key
i
, pi)  Gen(wi).

Set wi+1 = fi(w1, p1, ..., pi).

• Distinguishing The advantage of D is

Adv(D)
def

= Pr[D(key
1
, ..., key

j�1
, key

j
, key

j+1
, ..., key

q
, p1, ..., pq) = 1]

� Pr[D(key
1
, ..., key

j�1
, u, key

j+1
, ..., key

q
, p1, ..., pq) = 1].

(Gen, Rep) is (q, ✏sec, ssec, f2, ..., fq)-reusable if for all D 2 Dssec the advantage is at

most ✏sec.

The definition is parameterized by f2, ..., fq. This adversary implicitly defines

distributions W2, ...,Wq (which depend on W1 and the public values P1, ...Pi). Security

seems hopeless if fuzzy extractor is not secure on each of these distributions on their

own. This is the only requirement we make on these functions. We call these types

of functions admissible:

Definition 3.3.10. Let (Gen, Rep) be a (M,W , , t)-computational fuzzy extractor

that is (✏sec, ssec)-hard with error �. In the reusability game above, a set of functions

f2, ..., fq is admissible if for all W1 2 W for all w1 2 W1 and 8p1, ..., pq that are the

public outputs of Gen the distribution Wi,w1,p1,...,pi�1
= fi(w1, p1, ..., pi�1) is a member

of W.

Comparison with the Definition of [Boy04] The goal of a reusable fuzzy ex-

tractor is to allow enrollment of a source across multiple services. A service i sees an

reading of the source wi. Boyen considers two versions of reusable fuzzy extractors,
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first where the adversary sees p1, ..., pq (outsider security [Boy04, Definition 6]) and

tries to learn about the values w1, ..., wq or key
1
, ..., key

q
. Second, where the adversary

controls some subset of the servers and can generate keys on arbitrary p0
i

(insider

security [Boy04, Definition 7]). This allows the adversary to learn a subset of keys

ri (by performing key generation on the valid pi). This definition makes sense when

servers are compromised (after enrollment) and act maliciously. In both definitions,

the adversary creates a perturbation function fi after seeing p1, ..., pi�1 (and generated

keys for outsider security) and the challenger generates wi = fi(w1). The definition

is parameterized by the class of allowed perturbation functions.

Boyen constructs a outsider reusable cryptographic fuzzy extractor for unbounded

q when the perturbation family is a transitive isometric permutation groups. Boyen

transforms this construction to insider security using random oracles.

Insider security strengthens outsider security in two ways. First, it allows the

adversary to see some subset of keys, second it allows the adversary to perform key

generation on arbitrary pi. This mixes two properties of a fuzzy extractor: reusability

and robustness [DKRS06]. Robust fuzzy extractors provide security against modified

p. In this work, we show reusability when key
i

are observed but do not handle the

issue of robustness. That is, we assume keys may be exposed but servers keep honest

state. Our definition lies between outsider and insider security.

We adapt the definition of Boyen to the computational setting (Definition 3.3.9).

The definition of Boyen considers a single adversary. We split the adversary into

two parts, one of which is information-theoretic and another that is computationally

bounded. The functions f2, ..., fq can be thought of as a single adversary that sees

all prior state. However, to provide meaningful security in the computational setting,

we cannot have communication between f2, ..., fq and D.7 Because these two adver-

7An alternative would be to have a single computationally bounded adversary. Construction 7.1.1
satisfies this alternative adaption as well.
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saries do not communicate we strengthen the definition by allowing the perturbation

functions, fi, to see the original sample w1. This was not allowed in the definition of

Boyen as it would make security impossible.
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Chapter 4

Measuring the Strength of a Noisy Distribution

In this chapter, we show how to improve fuzzy extractors by incorporating additional

structure of the source distribution W . We begin by definition fuzzy min-entropy

which describes a noisy distribution’s suitability for key derivation (Section 4.1).

We then show how to construct fuzzy extractors if a distribution is exactly known

(Section 4.2). However, we show that distributional uncertainty comes at a cost. We

show if a distribution W is only known to come from a family of distributions W ,

then it may be impossible to construct a fuzzy extractor (Section 4.3).

4.1 Fuzzy Min-Entropy: a Necessary Condition

The value p allows everyone, including the adversary, to find the output of Rep(·, p)

on any input w0. Ideally, p should not provide any useful information beyond this

ability, and the outputs of Rep on inputs that are too distant from w should provide

no useful information, either. In this ideal scenario, the adversary is limited to trying

to guess a w0 that is t-close to w. Letting w0 be the center of the maximum-weight

ball in W would be optimal for the adversary. We therefore measure the quality of a

source by (the negative logarithm of) this weight.

Definition 4.1.1. The t-fuzzy min-entropy of a distribution W in a metric space

(M, dis) is:

Hfuzz

t,1
(W ) = � log

0

@max
w0

X

w2W |dis(w,w0)t

Pr[W = w]

1

A

Fuzzy min-entropy is a necessary condition for security:

Proposition 4.1.2. Let W be a distribution over (M, dis) and let n = log |M|. If

Hfuzz

t,1
(W ) = ⇥(log n) there is no (M, W, , t)-fuzzy extractor with error � = ngl(n)

for  = !(log n).
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Proof. Let W be a distribution where Hfuzz

t,1
(W ) = ⇥(log n). This means that there

exists a point w0 2 M such that Prw2W [dis(w, w0)  t] � 1/poly(n). Consider the

following distinguisher D:

• Input key, p.

• If Rep(w0, p) = key, output 1.

• Else output 0.

Clearly, Pr[D(Key, P ) = 1] � 1/poly(n)� �, while Pr[D(U, P ) = 1] = 1/2�. Thus,

when  = !(log n):

�D((Key, P ), (U, P )) �
1

poly(n)
� � �

1

2�
= 1/poly(n).

Note that D only provides an input and looks at the output, thus it extends to an

interactive protocol. Also, D is of size max |M|+ |Rep| where max |M| is the longest

description of an item in the metric space. Thus, D is also a distinguisher in the

computational setting.

Generalizing to correlated random variables Instead of considering w, w0 that

have bounded distance, we treat W,W 0 as a pair of correlated random variables.

Previous results in this setting are discussed in Section 3.1. Fuzzy min-entropy can

be generalized to this setting. Fuzzy extractors consider the worst case w0. When

considing correlated readings, it is natural to treat W 0 as a random variable:1

Definition 4.1.3. Let (W,W 0) be a pair of correlated random variables. The corre-

lated fuzzy min-entropy of W,W 0 is:

Hcorr(W,W 0) = � log

0

@ max
w02supp(W 0)

X

w2W |Pr[W=w|W 0=w0]>0

Pr[W = w]

1

A .

1Fuzzy extractors are defined to require high probability of correctness for all pairs w, w0. In the
correlated setting, it may make sense to provide an average-case guarantee, where the probability
of correctness is also over the draw of w, w0. Renner and Wolf use a smoothed notion of entropy
that removes the � fraction of the probability mass of W = w|W 0 = w0 with the most points to
improve parameters under such a definition. In this work, we consider worst case correctness and
use unsmoothed entropy.
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In Definition 4.1.1, the sum is implicitly over W = w|W 0 = w0 since we assume any

w0 within distance t is possible. For now, we consider su�ciency of Hfuzz

t,1
(W ) for key

derivation from noisy sources (Definition 4.1.1). We then consider the implications

of our results on the correlated reading setting (Definition 4.1.3).

4.2 Su�ciency of Hfuzz
t,1 When the Algorithms Know the Dis-

tribution

In this section, we consider fuzzy extractors that precisely know the input distri-

bution W . We call this setting the known-distribution setting (see discussion after

Definition 3.3). We show it is possible to build known-distribution secure sketches (and

thus fuzzy extractors through Lemma 3.3.3) whenever Hfuzz

t,1
(W ) = !(log n). We first

consider flat distributions and show that hashing maintains fuzzy min-entropy and

su�ces to disambiguate points. We then turn to arbitrary distributions.

4.2.1 Flat Distributions

A distribution is flat if all points in its support have the same probability.

Definition 4.2.1. A distribution W is flat if for all w0, w1 2 supp(W ), Pr[W =

w0] = Pr[W = w1].

Denote the largest number of points in a ball of radius t in the support of W as

�t = maxw02M |{w|w 2 supp(W ) ^ dis(w, w0)  t}|. For flat distributions, the weight

of this maximum-probability ball (which determines Hfuzz

t,1
(W ) by Definition 4.1.1) is

proportional to the number of points in it. More precisely,

Hfuzz

t,1
(W ) = � log

✓
max
w02M

|{w|w 2 supp(W ) ^ dis(w, w0)  t}| · Pr[W = w]

◆

= � log

✓
max
w02M

|{w|w 2 supp(W ) ^ dis(w, w0)  t}| · 2�H1(W )

◆

= H1(W )� log �t. (4.1)
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We use universal hashes to construct secure sketches for flat distributions. Skoric et

al. constructed secure sketches from universal hashes to correct a polynomial number

of error patterns [ŠTGP09].

Definition 4.2.2 ([CW79]). Let F : K ⇥M ! R be a function. We say that F is

universal if for all distinct x1, x2 2M:

Pr
K K

[F (K, x1) = F (K, x2)] =
1

|R|
.

Construction 4.2.3. Let F : K ⇥M ! R be a universal hash function. Let W be

a distribution. Define SSW , RecW as:

SSW

1. Input: w.

2. Sample K  K.

3. Set p = F (K, w), K.

RecW

1. Input: (w0, p = y, K)

2. Let W ⇤ = {w 2 supp(W )|dis(w, w0)  t}.

3. For w⇤ 2 W ⇤, if F (K, w⇤) = y,

output w⇤.

4. Output ?.

Lemma 4.2.4. Let W be a flat distribution with H1(W ) � m. Then Construction

4.2.3 is a (M, {W}, m � log |R|, t)-known distribution secure sketch with error � 
�t�1

|R|
.

Proof. We first argue security. Fix some W 2 W . Since K and W are independent

H̃1(W |K) = H1(W ) = m. Then by [DORS08, Lemma 2.2b], H̃1(W |K, F (K, W )) �

H1(W )� log |F (W , W )| � m� log |R|.

We now argue correctness. Fix some w, w0. Let W ⇤ denote the set of elements in

W within distance t of w0. The size of W ⇤ is at most �t. Since w, w0 are independent

of SS this set is independent of the choice of K. The algorithm Rec will never output

? as the correct w will match the hash. The probability that another element w⇤
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collides is:

Pr[9w⇤ 2 W ⇤
|w⇤ 6= w ^ F (K, w⇤) = F (K, w)] 

X

w⇤2W ⇤|w⇤ 6=w

Pr[F (K, w⇤) = F (K, w)]

=
X

w⇤2W ⇤|w⇤ 6=w

1

|R|


�t � 1

|R|

The inequality proceeds by union bound. The first equality proceeds by the universal-

ity of F and the second inequality proceeds by noting the number of wrong neighbors

is bounded by �t � 1. This completes the proof.

Corollary 4.2.5. Let n = log |M|. If |R| � |�t| · n!(1) then Construction 4.2.3 is

correct with overwhelming probability. That is, setting log |R| = log �t + !(log n)

su�ces.

Construction 4.2.3 writes down enough information to disambiguate any ball of points.

The remaining entropy for this construction is H̃1(W |SS(W )) = H1(W ) � log �t �

!(log n). For a flat distribution this is within a super-logarithmic factor of optimal (see

Equation (4.1)). By choosing � based on Hfuzz

t,1
(W ) we build (SS, Rec) such that

H̃1(W |SS(W )) = !(log n).

4.2.2 Arbitrary Distributions

The worst-case hashing approach does not work for arbitrary sources. The reason is

that some balls may have many points but low total weight. For example, let W be a

distribution consisting of the following balls. Denote by B1

t
a ball with 2H1(W ) points

with probability Pr[W 2 B1

t
] = 2�H1(W ). Let B2

t
, ..., B2

�H1(W )

t
be balls with one point

each with probability Pr[W 2 Bi

t
] = 2�H1(W ). Then the hashing algorithm needs to

write down H1(W ) bits to achieve correctness on B1

t
. However, with probability

1� 2�H1(W ) the initial reading is outside of B1

t
, and the hash completely reveals the

point.

Dealing with non-flat distributions requires a new strategy. Many solutions for

manipulating high entropy distributions leverage a solution for flat distributions and
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use the fact that high entropy distributions are convex combinations of flat distri-

butions. However, a distribution with high fuzzy min-entropy may be formed from

component distributions with little or no fuzzy min-entropy. It is unclear how to

leverage the convex combination property in this setting.

The main obstacle in the arbitrary setting is distinguishing between a setting

where a ball has a few high probability points and a large number of low probability

points. To overcome this problem, we write the probability of w 2 W in the sketch

output. To ensure this information does not completely reveal w we write down

blog Pr[W = w]c. We then use a universal hash whose output length is proportional

to the number of close points of the same probability as w. This construction divides

the distribution W into probability levels. Each level is nearly flat.

Construction 4.2.6. Let M be a metric space and let n = log |M|. Let W be a

distribution with H1(W ) = m. Let ` 2 Z+ be a parameter. Let Li = (2�(i+1), 2�i] for

i = m, ...,m + `. Let Fi : Ki ⇥M ! Ri be a parameterized family of universal hash

functions. Define SSW , RecW as:

SSW

1. Input: w.

2. If Pr[W = w]  2�(m+`). Set p =

0, w.

3. Else

(a) Find i such that Pr[W = w] 2

Li.

(b) Sample K  Ki.

(c) Set ss = 1, i, Fi(K, w), K.

RecW

1. Input: (w0, ss)

2. If ss0 = 1, output ss1,...,|y|.

3. Else

(a) Parse (i, y,K) = ss1,...,|y|.

(b) W ⇤ = {w 2 supp(W )|

dis(w, w0)  t,

Pr[W = w] 2 Li}.

(c) For w⇤ 2 W ⇤,

if Fi(K, w⇤) = z, output w⇤.

(d) Output ?.

We extend our notation for the maximum likelihood ball to the leveled case. Define
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�t,i as the maximum number of points in a ball in level i. That is,

�t,i = max
w02M

|{w|w 2 supp(W ) ^ dis(w, w0)  t ^ Pr[W = w] 2 Li}| .

Theorem 4.2.7. Let W be a distribution over M where n = logM. Let � > 0 be an

function of n. Let Fi : Ki⇥M! Ri be a parameterized family of universal hash func-

tions where |Ri| = (�t,i � 1)/�. When ` = n Construction 4.2.6 is a (M, {W}, m̃, t)-

known distribution secure sketch with error � for m̃ = Hfuzz

t,1
(W )� log n� log 1/�� 3.

Proof. Throughout the proof we assume that ` = n is the number of levels. The proof

can be carried out for an arbitrary ` but it leads to a complicated theorem statement.

Correctness: Fix some w, w0. If Pr[W = w]  2�(m+`) = 2�(m+n), then w is simply

transmitted to Rec and correctness is clear. When Pr[W = w] > 2�(m+n) let L⇤
i

be

the level of Pr[W = w].

Let W ⇤ denote the set of elements of W in Li within distance t of w0. The

size of W ⇤ is at most �t,i. The choice of w, w0 is independent of SS, so this set is

independent of Ki (it does e↵ect the value of i but not the particular outcome from

Ki). The probability that another element w⇤ matches the hash is:

Pr[9w⇤ 2 W ⇤
|w⇤ 6= w ^ F (K, w⇤) = F (K, w)] 

X

w⇤2W ⇤|w⇤ 6=w

Pr[F (K, w⇤) = F (K, w)]

=
X

w⇤2W ⇤|w⇤ 6=w

1

|Ri|


�t,i � 1

|Ri|
= �

The inequality is by union bound. The first equality follows from the universality of

F . The second inequality follows since the number of neighbors is bounded by �t,i.

Ideal Adversary with access to Level Information: To aid in the argument in

security, we show the level information on its own is not too harmful.

The best strategy for an adversary that receives i as is to guess a point that has

the most nearby weight in that level. The adversary chooses

w⇤ = arg max
w02M

Pr
w2W |2�(i+1)<Pr[W=w]2�i^dis(w,w⇤)

[W = w].

The success of this adversary is at least 2�(i+1)�t,i as there at �t,i nearby points in

that layer each with probability at least 2�(i+1). There are n outcomes for i. The

overall success of such an adversary is at most n better than an adversary without
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such input (by [DORS08, Lemma 2.2]). That is,

Ei|mim+n2�(i+1)�t,i

 E
i|min+m

0

@max
w⇤2W

X

w2W |2�(i+1)<Pr[W=w]2�i^dis(w,w⇤)t

Pr[W = w]

1

A

 n

0

@max
w⇤2W

X

w2W |dis(w,w⇤)t

Pr[W = w]

1

A

= n2�H
fuzz

t,1(W ) (4.2)

Security: We now argue security. First note that the total weight of points whose

probability is less than 2�(n+m) is at most 2�m (there are at most 2n points in the

distribution). Let 1low be the indicator random variable for Pr[W = w]  2�(n+m).

Then

H̃1(W |SS(W )) = � log
⇣
Pr[1low = 1] ⇤ 1 + Pr[1low = 0]2�H̃1(W |SS(W )^1low=0)

⌘

� log
⇣
2�m + (1� 2�m)2�H̃1(W |SS(W )^1low=0)

⌘

For the remainder of the proof, we seek a bound on

2�H̃1(W |SS(W )^1low=0 = max
w2W |2�(n+m)<Pr[W=w]

Pr[W = w|SS(W )].

We separate out this quantity into levels:

maxw2W |Pr[W=w]>2�(m+n) (Pr[W = w|SS(W )])

= E
i|mim+n

✓
max

w2W |Pr[W=w]2Li

Pr[W = w|SS(W ), i]

◆

= E
i|mim+n

✓
max

w2W |Pr[W=w]2Li

Pr[W = w] · 2|SS(W )|i|

◆

 E
i|mim+n

✓
max

w2W |Pr[W=w]2Li

Pr[W = w] · 2H0(SS(W )|i)

◆

 E
i|mim+n

�
2�i
⇤ �t,i/�

�


Ei|mim+n

�
2�(i+1)

· �t,i

�

2�

=
n2�H

fuzz

t,1(W )

2�
.



53

Where the last line follows by Equation (4.2). Combining both cases we have:

H̃1(W |SS(W )) = � log

 
2�m +

(1� 2�m)(n)2�H
fuzz

t,1(W )

2�

!

� � log min{2�m,
(1� 2�m)n2�H

fuzz

t,1(W )

2�
})� 1

� Hfuzz

t,1
(W )� log n + log � � log(1� 2�m)� 2

� Hfuzz

t,1
(W )� log n + log � � 3

Where the third line follows from the second because Hfuzz

t,1
(W )  H1(W ) = m. The

last line follows from the fourth because if m � 1 then log(1� 2�m)  1 and if m < 1

the entire bound is vacuous as Hfuzz

t,1
(W ) < 1.

Corollary 4.2.8. Let M be a metric space where n = log |M|. For any distribution

W over M with Hfuzz

t,1
(W ) = !(log n), there exists a (M, {W}, m̃, t)-known distribu-

tion secure sketch with m̃ = !(log n) and � = ngl(n). (Extendible to a fuzzy extractor

using Lemma 3.3.3.)

Connection to the characterization of [RW05] Renner and Wolf characterize

when it is possible to derive keys from correlated random variables [RW05, Theorem

3]. They consider all possible (randomized) transforms T, T 0 of W,W 0 into a new pair

of variables V, V 0. They show that

|key|  sup
(V,V 0) (T (W ),T 0(W ))

✓
H1(V |T 0)� log max

v02V 0
|{v|Pr[V = v|T 0 ^ V 0 = v0] > 0}|

◆
.

Furthermore, they show that there is a transformation that achieves a key of nearly

this length. The result is nonconstructive as there is no guidance on how to find the

transforms T, T 0. Since there is no known bound on the length of T, T 0 it is not clear

how to search the transform space even with unlimited time.

Construction 4.2.6 can be used to derive keys from correlated random variables.
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The main change is to define

W ⇤ = {w|Pr[W = w|W 0 = w0] > 0 ^ Pr[W = w] 2 Li}.

Our result shows if one is satisfied with obtaining a strong key when possible (our

protocol has losses of 2 log 1/✏ + log n + log 1/�), then a protocol is possible (and

explicitly constructible) in the original space.

4.3 Impossibility of Secure Sketches for a Family with Hfuzz
t,1

In the previous section, we showed the su�ciency of Hfuzz

t,1
(W ) for known distribution

algorithms. Unfortunately, it is unrealistic to assume that W is completely known.

Traditionally, algorithms deal with this uncertainty by providing security for a family

of distributions W .

In this section, we show uncertainty of W comes at a real cost. The security game

of a fuzzy extractor can be thought of as a three stage process: 1) the challenger

specifies (SS, Rec), 2) the adversary sees (SS, Rec) and specifies W 2W 3) the adver-

sary wins if H̃1(W |SS(W )) < m̃. We prove impossibility in a game that is harder for

the adversary to win: 1) the challenger specifies (SS, Rec) 2) the adversary samples a

random distribution from W  W 3) the adversary wins if H̃1(W |SS(W )) < m̃.

Let V be the process of uniformly sampling W  W and then sampling w  W .

Let the random variable Z indicate which W was sampled. The view of the challenger

is V , while the view of the adversary is a distribution V |Z. Our results rule out

security for an average member of W . It may be possible to improve parameters by

ruling out only a worst case W . In Chapter A, we show that providing security for

a family W is equivalent to providing security for all distributions over that family.

We now show a family of distributions W that does not admit a secure sketch. Our

negative results in this chapter are specific to the Hamming metric.
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Theorem 4.3.1. Let n be a security parameter. There exists a family of distributions

W over Z� such that for each element W 2 W, Hfuzz

t,1
(W ) = !(log n), and yet for

any (M,W , m̃, t)-secure sketch (SS, Rec) with error � < 1/4 and distance � > t � 4,

the remaining entropy m̃ < 2.

Furthermore, this is true on average. Let V be process of uniformly sampling

W  W and sampling w  W , and let Z indicate which W is sampled. Then

H̃1(V |SS(V ), Z) < 2.

Proof. We prove the stronger average case statement. We first describe a family W .

Let F be some field of size q = !(poly(n)). Let W be the set of all distributions of

the form

W =

0

B@

~1
a2

...
a�

1

CAW1 +

0

B@

0
b2

...
b�

1

CA

where W1 is uniform and Wi = aiW1 + bi for 2  i  � and ai, bi 2 F, ai 6= 0. This

type of distribution is an a�ne line in space F�. Define V as the process of uniformly

choosing W  W and then sampling from w  W . The adversary sees SS(V ) and

Z. Z is the description of the line Z = a2, b2, ..., a�, b�. The algorithms SS, Rec never

see Z. Fix some 4  t < �. We show the following:

• Proposition 4.3.2: for all W 2W , Hfuzz

t,1
(W ) = !(log n). That is, 8z, Hfuzz

t,1
(V |Z =

z) = !(log n).

• Proposition 4.3.3: the distribution V is uniform.

• Lemma 4.3.4: for any secure sketch on V , the support size of V |SS(V ) decreases

significantly. Here we show the minimum distance of V |SS(V ) is at least t.

• Lemma 4.3.5: for most lines Z, the intersection of the support of V |Z and

V |SS(V ) is small. That is, H̃0(V |SS(V ), Z) < 2.

The proof of Theorem 4.3.1 uses Shannon codes (Definition 2.3.2). We now prove

item in the above outline.

Proposition 4.3.2. For each W 2W, Hfuzz

t,1
(W ) = !(log n).

Proof. Consider some W 2W . The value w1 is uniform in a field of size !(poly(n)),

so H1(W ) = !(log n). We now show that for any w, w0 2 W , dis(w, w0) = � > t.
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This shows that Hfuzz

t,1
(W ) = H1(W ). Fix some w, w0 2 W . Clearly, w1 6= w0

1
, for

any i, wi = aiw1 + bi and w0
i

= aiw01 + bi. Since ai 6= 0, aiw1 6= aiw01 and thus

aiw1 + bi 6= aiw01 + bi. That is, dis(w, w0) = �.

Proposition 4.3.3. V is the uniform distribution over F�.

Proof. Consider some w 2 V . Then w was drawn from some intermediate distribution

W with coe�cients a2, b2, ..., a�, b�. The value w1 is uniformly random and wi are

uniformly random since b2, ..., b� are uniformly random.

Lemma 4.3.4. Fix some SS, Rec algorithm with error � < 1/4, then H̃0(V |SS(V )) 

(� � t + 1) log q + 1.

Proof. We assume that Rec is deterministic in our analysis. Any randomness neces-

sary for the Rec algorithm can be provided by SS. This is the same as considering

Rep that outputs any coin it flips. Since w, w0 are independent of p this does not

e↵ect correctness. Security is defined based on the output of Rec so outputting the

coins of Rep does not e↵ect security. By the definition of correctness for (SS, Rec),

8w, w0, Pr
ss SS(w)

[Rec(w0, ss) 6= w] < 1/4.

Fix some w. By Markov’s inequality, there exists a set Ass such that Pr[ss 2 Ass] �

1/2 and 8ss 2 Ass,

{w0|dis(w0, w)  t ^ Rec(w0, p) 6= w}  2� < 1/2.

Consider some ss⇤ 2 Ass. We now show that H0(V |SS(V ) = ss⇤)  (��t+1) log q.

For the sketched value w, {w0|dis(w, w0)  t ^ Rec(w0, p) 6= w]  2�.

For every value in V |SS(V ) = ss⇤ this is also true. This makes the support of

V |SS(V ) = ss⇤ a (t, 2�)-Shannon code (see Definition 2.3.2). This implies that for all

w1, w2 2 V |SS(V ) = ss⇤, dis(w1, w2) � t (since 2� < 1/2). That is V |SS(V ) = ss⇤ is

a set with minimum distance at least t.

By the Singleton bound, this implies that H0(V |SS(V ) = ss⇤)  (� � t + 1)q.

Averaging over SS(V ) = ss⇤ one has that H̃0(V |P )  (� � t + 1) log q + 1.

Lemma 4.3.5. H̃1(V |SS(V ), Z) < 2.

Proof. Recall that Z consists of 2� coe�cients and there are (q � 1)��1q��1 equally

likely values for Z. As described above, the view of SS, Rec is a uniform distribution
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V . The only information seen by SS algorithm is in the point V = v. The length

of this point is � log q. Conditioned on this information there are still many possible

values for Z. That is,

8v,H0(Z|V = v) = log

✓
(q � 1)��1q��1

q�

◆
= log

�
(q � 1)��1/q

�
.

Consider two possible z1, z2 that are possible values of Z (having seen v). The distri-

butions V |Z = z1 and V |Z = z2 intersect at one point (namely v).

We now show for any sketch algorithm there are few possible values of V |Z in

the support of V |SS(V ). The distributions V |Z = z1 and V |Z = z2 for possible

z1, z2 (having seen v) overlap only at the point v. This means for any v⇤ 2 V |SS(V )

(other than the true v) there is at most one z such that v⇤ 2 V |SS(V ), Z = z.

The optimum strategy is to include these values uniformly from di↵erent Z values.

We show this across di↵erent sketch values. Consider some fixed sketch value s and

let hs = H0(V |SS(V ) = s). Recall that

H̃0(V |SS(V )) = log E
s2SS(V )

2H0(V |SS(V )=s) = log E
s2SS(V )

2hs

Conditioned on seeing the point V there are (q � 1)��1/q possible values for Z with

disjoint support outside of the sketched point. Consider these possible values for Z

as containers to be filled with the 2hss items (possible values of V |SS(V ) = ss). Each

container receives automatically receives one free point (all the distributions share v).

The average number of items in each container is maximized when the containers are

filled equally. That is, the average number of items in each container is bounded by

the number of items divided by the number of container. That is,

H̃0(V |Z, SS(V ) = ss)  log

✓
# items + # containers

# containers

◆

= log

✓
2hssq

(q � 1)��1
+ 1

◆

Then averaging over the possible values of s, we have the following as long as t �
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4 (using Lemma 4.3.6, which appears below):

H̃0(V |Z, SS(V )) = log E
s2SS(V )

2H̃0(V |SS(V )=ss,(Z|SS(V )=ss))

= log E
s2SS(V )

✓
2hsq

(q � 1)��1
+ 1

◆

 max

⇢
log

✓
q

(q � 1)��1
E

s2SS(V )

2hs

◆
+ 1, 1

�
.

Where the inequality follows because log x + 1  max{1 + log x, 1} for x � 0. The

left operand to max is bounded by 2 (bounding the max by 2):

log

✓
q

(q � 1)��1
E

s2SS(V )

2hs

◆
+ 1

= log q � (� � 1) log(q � 1) + log

✓
E

s2SS(V )

2hs

◆
+ 1

= log q � (� � 1) log(q � 1) + H̃0(V |SS(V )) + 1

 log q � (� � 1) log(q � 1) + (� � t + 1) log q + 2

 (� � t + 2) log q � (� � 1) log(q � 1) + 2

< (� � t + 2) log q � (� � 2) log q + 2 (by Lem 4.3.6)

 (4� t) log q + 2 < 2 .

Lemma 4.3.6. For any real numbers ↵  ⌘ with ⌘ � e + 1 (in particular, ⌘ � 4

su�ces), the following holds: ↵ log(⌘ � 1) > (↵� 1) log ⌘.

Proof. Because ⌘ � 1 is positive, and 1 + x < ex for positive x,

1 +
1

⌘ � 1
< e

1

⌘�1 .

Therefore, ✓
1 +

1

⌘ � 1

◆↵�1

< e
↵�1

⌘�1  e < ⌘ � 1

(since ↵  ⌘). Multiplying both sides by (⌘ � 1)↵�1, we obtain

⌘↵�1 < (⌘ � 1)↵ .
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Taking the logarithm of both sides yields the statement of the lemma.

Note: There is a tradeo↵ between the size of F and the error tolerance required for

the counter example. By increasing t it is possible to show a counter example for a

smaller F.

4.4 Impossibility of Fuzzy Extractors for a Family with Hfuzz
t,1

In the previous section, we showed a family of distributions that does not admit a

secure sketch. We provide a similar result for fuzzy extractors.

Theorem 4.4.1. Let n be a security parameter. There exists a family of distribu-

tions W over {0, 1}n satisfying the following conditions. For each element W 2 W,

Hfuzz

t,1
(W ) = !(log n). Let  � 2 and t = !(n1/2 log n). Any (M,W , , t, ✏)-fuzzy

extractor with error � = 0 has ✏ > 1/8� ngl(n).

Furthermore, this is true on average. Let V be process of uniformly sampling W  

W and sampling w  W and let Z indicate which W is sampled. Let (Key, P )  

Gen(V ). Then,

SD((Key, P, Z), (U, P, Z)) > 1/8� ngl(n) .

Proof Outline. We prove the stronger average case statement. Let ⌫ = !(log n) and

⌫ = o(n1/2/ log n). Let t = 4⌫n1/2 and note that n/⌫ > t.

Our counterexample uses a slightly di↵erent family of distributions W than the

counterexample for secure sketches. We will work over a binary alphabet (we used a

large alphabet in our counterexample for secure sketches). A property of the binary

Hamming space is that a large fraction of any set of bounded size is the near “bound-

ary” of that set. This will be crucial in our proof. We will embed the larger alphabet

we used into the binary Hamming metric. Let x1, ..., x⌫ 2 {0, 1}⌫ . Let F denote the

field of size 2⌫ . Let a2, ..., an/⌫ 2 F such that ai 6= 0 and let b2, ..., bn/⌫ 2 F. Interpret

x1, ..., x⌫ as a element x 2 F and let

w =

0

B@

~1
a2

...
an/⌫

1

CAx +

0

B@

0
b2

...
bn/⌫

1

CA .
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The multiplication is in F. Define a distribution W as the uniform distribution over

values of x for a particular value of a2, ..., an/⌫ , b2, ..., bn/⌫ . Let W be the set of all

such W .

Define V as the process of uniformly choosing W  W and then sampling from

w  W . The adversary sees SS(V ) and Z, where Z is the description of the line

Z = a2, ..., an/⌫ , b2, ..., bn/⌫ .

We now present an outline of the proof (formal statements and proofs follow):

• Proposition 4.4.2: for all W 2W , Hfuzz

t,1
(W ) = !(log n). That is, 8z, Hfuzz

t,1
(V |Z =

z) = !(log n).

• Proposition 4.4.3: the distribution V is uniform.

• Lemma 4.4.4: In expectation across Z, a large subset of keys that are not

possible. In more detail,

– Half the keys have at most 2n� pre images in the metric space (this is at

most half the metric space). Denote this set as Rsml.

– Consider some key 2 Rsml. Consider the set of Vkey = {w|Rep(w, p) =

key}. All points in V |SS(V ) are distance t from a boundary of Vkey (the

functionality of Rep guarantees that for the true w all nearby points map

to the same key). We show that most of Vkey is near a boundary. A result

of Frankel and Füredi says that the boundary of a region is minimized by

a ball containing the same number of points [FF81]. Hoe↵ding’s inequality

says that most of a ball lies near its boundary [Hoe63]. Together these two

results imply that Vkey is small.

– As before, there are many possible values for z1, z2 for the side informa-

tion Z (and these possible values are equally likely). Furthermore, the

distributions V |Z = z1 and V |Z = z2 have disjoint support outside of v.

– For most values of possible Z, the intersection between the viable pre

images of V |Z and Vkey contains at most one point (the received point v).

Checking if V |Z \ Vkey is nonempty is an e↵ective distinguisher.

Proposition 4.4.2. For each W 2W, Hfuzz

t,1
(W ) = !(log n).
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Proof. Consider some fixed W 2 W. The bits w1,...,⌫ are uniform, so H1(W ) =

!(log n). Recall that t = o(n/⌫). Fix some w, w0 2 W . Denote by x, x0 the values

that produce w, w0 respectively. Clearly, x 6= x0. Thus, for any i, aix + bi 6= aix0 + bi.

This implies that wi⌫+1,....,(i+1)⌫ 6= w0
i⌫+1,...,(i+1)⌫

. That is, at least one of the bits in

each block di↵ers between w and w0, and so dis(w, w0) � n/⌫. Since no two values

in the support of W lie in the same ball of radius t, we have Hfuzz

t,1
(W ) = H1(W ) =

!(log n).

Proposition 4.4.3. V is the uniform distribution over F�.

Proof. Consider some w 2 V over {0, 1}n. Then w  W with coe�cients a2, ..., a�

and b2, ..., b�. The value w1,...,⌫ = x is uniformly random and wi⌫+1,...,(i+1)⌫ are uni-

formly random since b2, ..., b� are random.

Lemma 4.4.4. Fix some (Gen, Rep) algorithm with  � 2. There exists an in-

formation theoretic distinguisher between (R, P, Z) and (U, P, Z) with advantage

✏ = 1/8� ngl(n).

Proof. As in the proof of Theorem 4.3.1, we assume that Rep is deterministic. Denote

by (Key, P )  Gen(V ). By Markov’s inequality, there exists a set Ap such that

Pr[p 2 Ap] � 1/2 and 8p 2 Ap,

(Key|P = p, P = p) ⇡2✏ (U, P = p).

Consider some p⇤ 2 Ap. The distribution Key|P = p⇤ is the set of possible keys.

The distribution Key|P = p⇤ induces a partition on the metric space. That is, for

every w 2 M, there exists a unique value key such that Rep(w, p⇤) = key. Denote

this partition by Qp⇤,key = {w|Rep(w, p⇤) = key}.

There exists a set Rsml where |Rsml| � 2�1 such that for all key 2 Rsml, |Qp⇤,r| 

M/2 = 2n�. If not, then [key|Qp⇤,key| > |M|. For the remainder of the proof we

restrict ourselves to elements in Rsml. Only points that are distance t from points

outside of Qp⇤,r are viable points in the metric space. These are the interior of Qp⇤,r:

Inter(Qp⇤,key) = {w|Rep(w, p⇤) = key ^ 8w0, dis(w, w0)  t ^ Rep(w0, p⇤) = key},

We will use the term deficient ball2:
2In most statements of the isoperimetric inequality, this type of set is simply called a ball. We

use the term deficient ball for emphasis.
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Definition 4.4.5. A set S is a ⌘-deficient ball if there exists a point x such that

B⌘�1(x) ✓ S ✓ B⌘(x).

Consider some key⇤ 2 Rsml. We now show that the interior of each Qp⇤,key⇤ is

small:

Lemma 4.4.6. |Inter(Qp⇤,key⇤)|  2n�4⌫.

Proof. By the isoperimetric inequality on the Hamming space (we use a version due

to [FF81, Theorem 1], the original result is due to Harper [Har66]), there exists a ⌘-

deficient ball Sp⇤,key⇤ centered at 0 and a set D such that |Sp⇤,key⇤| = |Inter(Qp⇤,key⇤)|,

|D| = |Q{
p⇤,key⇤| and 8s 2 Sp⇤,key⇤ , d 2 D, dis(s, d) � t (alternatively, the distance

between the sets is t). Furthermore, note that Sp⇤,key⇤ [D is a deficient ball (and its

radius is ⌘ + t). We now find bound the size of Sp⇤,key⇤ .

Recall that |Sp⇤,key⇤ [D| = |Qp⇤,key⇤|  2n�
 |M|/2. Since this set contains less

than half the points in the metric space we know its radius at most n/2. This means

that |Sp⇤,key⇤| is a deficient sphere of radius at most n/2� t. Let X denote a uniform

string on {0, 1}n. We use Hoe↵ding’s inequality [Hoe63]:

|Sp⇤,key⇤|  {x|dis(x, 0)  n� t} = 2n Pr
X {0,1}n

[Wgt(X)  (1/2� t/n)n]

 2ne�n((t/n)
2
) = 2ne�4⌫

 2n�4⌫

We have shown that |Inter(Qp⇤,key⇤)|  2n�4⌫ . To complete the proof it su�ces

to show that for most values of the auxiliary information Z there are many parts

Qp⇤,key⇤ that do not receive any points. Recall that Z consists of 2n/⌫ coe�cients

and there are (2n/⌫
� 1)⌫�12n�⌫ equally likely values for Z. As described above, the

view of Gen, Rep is a uniform distribution V . We know show there are many possible

values for Z|P = p⇤. The only information about Z is contained in the point V = v.

The length of this point is 2n. Conditioned on this information there are still many
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possible values for Z. That is,

8v,H0(Z|V = v) = log

✓
(2n/⌫

� 1)⌫�12n�⌫

2n

◆

= log
(2n/⌫

� 1)⌫�1

2⌫

> log
(2n/⌫)⌫�2

2⌫
(by Lemma 4.3.6)

= log
2(n�2⌫))

2⌫
= n� 3⌫.

Consider two possible z1, z2 that are possible values of Z. The distributions V |Z = z1

and V |Z = z2 intersect at one point (namely v).

This means that the Gen algorithm may include points for possible Z values into

parts Qp⇤,key⇤ (other than v) and these values are disjoint. The optimum strategy

is to include these values uniformly from di↵erent Z values. Consider the set of

all preimages of Rsml denoted Qsml = [key2Rsml
Inter(Qkey,p⇤). Note that Qsml 

2n�4⌫
|Rsml|. We now show that the intersection between Qkey,p⇤ is small for most

possible values z. As before each container (the values of z) receives one item for

free (the point v).

E
z

|Qsml \ (V |P = p⇤ ^ Z = z)| 

✓
# items + # containers

# containers

◆


2n�4⌫

|Rsml|

2n�3⌫
+ 1

=
|Rsml|

2⌫
+ 1

In expectation across Z,
|Rsml|

2⌫ + 1

|Rsml|


1

2⌫
+

1

|Rsml|

fraction of Rsml receive any support. We now present a distinguisher Dp⇤ for a

particular p⇤:

1. On input x, z.

2. Compute V |P = p⇤ ^ Z = z and Qp⇤,x.

3. If (Qp⇤,x \ V |P = p⇤ ^ Z = z) = ; output b = 0.

4. Else output b = 1.
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The distinguisher D(x, p, z) is formed by calling Dp(x, z) when p 2 Ap and out-

putting a random bit otherwise. The advantage of D is

Pr[D(Key, P, Z) = 1]� Pr[D(U, P, Z) = 1]

= (Pr[D(Key, P, Z) = 1|P 2 Ap]

� Pr[D(U, P, Z) = 1|P 2 Ap]) Pr[P 2 Ap]

�

X

p⇤2Ap

Pr[P = p⇤] (1� Pr[Dp⇤(U,Z) = 1])

�

X

p⇤2Ap

Pr[P = p⇤](1�

Pr[Dp⇤(U,Z) = 1|U 2 Rsml] Pr[U 2 Rsml])

�

X

p⇤2Ap

Pr[P = p⇤] Pr[U 62 Rsml]

�

X

p⇤2Ap

Pr[P = p⇤]

✓
1�

✓✓
1

|Rsml|
+

1

2⌫

◆
Pr[U 2 Rsml]

◆◆

�

X

p⇤2Ap

(Pr[P = p⇤] Pr[U 62 Rsml])

�

X

p⇤2Ap

Pr[P = p⇤]

✓
1�

1

2⌫
�

1

2
Pr[U 2 Rsml]� Pr[U 62 Rsml]

◆

�

X

p⇤2Ap

Pr[P = p⇤]

✓
1�

1

2⌫
�

1

2
Pr[U 2 Rsml]� Pr[U 62 Rsml]

◆

�

X

p⇤2Ap

Pr[P = p⇤]

✓
1�

1

2⌫
� 1 +

1

2
Pr[U 2 Rsml]

◆

�

X

p⇤2Ap

Pr[P = p⇤] (1/4� ngl(n)) �
1

8
� ngl(n).

The sixth line follows since Rsml � 2�1
� 2. The eighth line follows because Pr[U 2

Rsml] � 1/2. The last inequality proceeds because Pr[P 2 Ap] � 1/2. This completes

the proof of Lemma 4.4.4.

Note: As stated in Section 1.2.2, using strong computational assumptions it is possi-

ble to avoid this result. Furthermore, for the specific family used in the secure sketch,

we construct computational fuzzy extractors for this family of distributions when F
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is large enough under weaker assumptions in Construction 7.2.3. The construction is

stated with imperfect correctness. A construction with perfect correctness is obtained

by using a code that corrects t bidirectional errors instead of a code that corrects t

unidirectional errors.

Comparison with Theorem 4.3.1 The parameters in this result are weaker than

those in Theorem 4.3.1. This result requires: 1) higher error tolerance t = !(n1/2 log n)

2) the fuzzy extractor must have perfect correctness. The secure sketch counter ex-

ample needs t = 4 and allows the Rec to be wrong almost 1/4 of the time.
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Chapter 5

Looking Beyond Sketch-then-Extract

As described in the introduction, secure sketches are subject to considerably stronger

negative results than fuzzy extractors. In this chapter, we first show that compu-

tational versions of secure sketches are also subject to strong negative results. We

then show how to construct a fuzzy extractor (without using a secure sketch), that

supports sources with more errors than entropy.

5.1 Impossibility of Computational Secure Sketches

In this section, we consider whether it is possible in build a secure sketch that retains

significantly more computational than information-theoretic entropy. We consider

two di↵erent notions for computational entropy, and for both of them show that

corresponding secure sketches are subject to upper bounds on the residual entropy.

In particular, we show how to transform any sketch retaining HILL entropy into an

information-theoretic sketch that retains a similar amount of min-entropy. Thus, it

seems that relaxing security of sketches from information-theoretic to computational

does not help.

In conjunction with previous results on upper bounds for the information-theoretic

entropy of a secure sketch, this motivates us to build fuzzy extractors that do not

incorporate secure sketches.

5.1.1 Bounds on Secure Sketches using HILL entropy

HILL entropy is a commonly used computational notion of entropy (Definition 2.2.1).

Intuitively, HILL entropy is as good as average min-entropy for all computationally-

bounded observers. Thus, redefining secure sketches using HILL entropy is a natural
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relaxation of the original information-theoretic definition; in particular, the sketch-

and-extract construction in Lemma 3.3.3 would yield pseudorandom outputs if the

secure sketch ensured high HILL entropy. We will consider secure sketches that retain

relaxed HILL entropy (Definition 2.2.2).

Definition 5.1.1. We say that (SS, Rec) is a HILL-entropy (M, m, m̃, t) secure

sketch that is (✏, ssec)-hard with error � if it satisfies Definition 3.3.2, with the se-

curity requirement replaced by HHILL-rlx

✏,ssec
(W |SS(W )) � m̃.

Unfortunately, we will show below that such a secure sketch implies an error

correcting code with approximately 2m̃ points that can correct t random errors (see

[DORS08, Lemma C.1] for a similar bound on information-theoretic secure sketches).

For the Hamming metric, our result essentially matches the bound on information-

theoretic secure sketches of [DORS08, Proposition 8.2]. In fact, we show that, for

the Hamming metric, HILL-entropy secure sketches imply information-theoretic ones

with similar parameters, and, therefore, the HILL relaxation gives no advantage.

The intuition for building error-correcting codes from HILL-entropy secure sketches

is as follows. In order to have HHILL-rlx

✏,ssec
(W |SS(W )) � m̃, there must be a distribu-

tion X, Y such that H̃1(X|Y ) � m̃ and (X, Y ) is computationally indistinguishable

from (W, SS(W )). Sample a sketch s  SS(W ). We know that SS followed by Rec

likely succeeds on W |s (i.e., Rec(w0, s) = w with high probability for w  W |s and

w0  Bt(w)). Consider the following experiment: 1) sample y  Y , 2) draw x X|y

and 3) x0  Bt(x). By indistinguishability, Rec(x0, y) = x with high probability. This

means we can construct a large set C from the support of X|y. C will be an error

correcting code and Rec an e�cient decoder. We can then use standard arguments

to turn this code into an information theoretic sketch.

To make this intuition precise, we need an additional technical condition: sampling

a random neighbor of a point is e�cient.
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Definition 5.1.2. We say a metric space (M, dis) is (sneigh, t)-neighborhood sam-

plable if there exists a randomized circuit Neigh of size sneigh that for all t0  t,

Neigh
t0(w) outputs a random point at distance t0 of w.

We use the definition of a maximal and average error Shannon codes (Definitions

2.3.2 and 2.3.3). Recall, when we use the term Shannon code, we mean a maximal

error Shannon code. A sketch that retains m̃-bits of relaxed HILL entropy implies a

maximal error Shannon code with nearly 2m̃ points.

Theorem 5.1.3. Let (M, dis) be a metric space that is (sneigh, t)-neighborhood sam-

plable. Let (SS, Rec) be an HILL-entropy (M, m, m̃, t)-secure sketch that is (✏, ssec)-

secure with error �. Let srec denote the size of the circuit that computes Rec. If

ssec � (t(sneigh + srec)), then there exists a value s and a set C with |C| � 2m̃�2 that

is a (t, 4(✏ + t�))-Shannon code with recovery procedure Rec(·, s).

Proof. Let W be a distribution of min-entropy m. Let (X, Y ) be a joint distribution

such that H̃1(X|Y ) � m̃ and

�Dssec ((W, SS(W )), (X, Y ))  ✏ ,

where ssec � t(sneigh + srec). One such (X, Y ) must exist by the definition of relaxed

HILL entropy. Define D as:

1. Input w 2M, z 2 {0, 1}⇤, t.

2. For all 1  t0  t:

w0  Neigh
t0(w).

If Rec(w0, z) 6= w output 0.

3. Output 1.

By correctness of the sketch Pr[D(W, SS(W )) = 1] � 1� t�. Since

�D((W, SS(W )), (X, Y ))  ✏,

we know Pr[D(X, Y ) = 1] � 1� ✏� t�. Let Xy denote the random variable X|Y = y.

By Markov’s inequality, there exists a set SY such that Pr[Y 2 SY ] � 1/2 and for all

y 2 SY , Pr[D(Xy, y) = 1] � 1� 2(✏ + t�).
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Because H̃1(X|Y ) � m̃, we know that Ey Y maxx Pr[Xy = x]  2�m̃. Applying

Markov’s inequality to the random variable maxx Pr[Xy = x], there exists a set S 0
Y

such that Pr[y 2 S 0
Y
] > 1/2, and for all y 2 S 0

Y
, H1(Xy) � m̃�1 (we can use the strict

version of Markov’s inequality here, because the random variable maxx Pr[Xy = x] is

positive). Fix one value y 2 SY \ S 0
Y

(which exists because the sum of probabilities

of SY and S 0
Y

is greater than 1). Thus, for all such that t0, 1  t0  t,

Pr
x Xy

[x0  Neigh(x, t0) ^ Rec(x0, z) = x] � 1� 2(✏ + t�).

Thus, Xy is a (t, 2(✏ + t�))-average error Shannon code with recovery Rec(·, y) and

2m̃�1 points. The statement of the theorem follows by application of Lemma 2.3.4.

For the Hamming metric, any Shannon code (as defined in Definition 2.3.2) can be

converted into an information-theoretic secure sketch (as described in [DORS08, Sec-

tion 8.2] and references therein). The idea is to use the code o↵set construction, and

convert worst-case errors to random errors by randomizing the order of the symbols

of w first, via a randomly chosen permutation ⇡ (which becomes part of the sketch

and is applied to w0 during Rec). The formal statement of this result can be expressed

in the following Lemma (which is implicit in [DORS08, Section 8.2]).

Lemma 5.1.4. For an alphabet Z, let C be a (t, �) Shannon code over Z�. Then

there exists a (Z�, m,m � (� log |Z| � log |C|), t) secure sketch with error � for the

Hamming metric on Z�.

Combining Theorem 5.1.3 and Lemma 5.1.4 gives us the negative result for the

Hamming metric: a HILL-entropy secure sketch (for the uniform distribution) implies

an information-theoretic one with similar parameters:

Corollary 5.1.5. Let Z be an alphabet. Let (SS0, Rec0) be an (✏, ssec)-HILL-entropy

(Z�, � log |Z|, m̃, t)-secure sketch with error � for the Hamming metric over Z�, with

Rec0 of circuit size srec. If ssec � t(srec+� log |Z|), then there exists a (Z�, � log |Z|, m̃�

2, t) (information-theoretic) secure sketch with error 4(✏ + t�).

Note In Corollary 5.1.5, the resulting (SS, Rec) is not guaranteed to be e�cient be-

cause the proof of Theorem 5.1.3 is not constructive.
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Corollary 5.1.5 extends to non-uniform distributions: if there exists a distribution

whose HILL sketch retains m̃ bits of entropy, then for all distributions W , there is an

information theoretic sketch that retains H1(W )� (� log |Z|�m̃)�2 bits of entropy.

5.1.2 Bounds on Secure Sketches using Unpredictability Entropy

In the previous section, we showed that any sketch that retained HILL entropy could

be transformed into an information theoretic sketch. However, HILL entropy is a

strong notion. In this section, we therefore ask whether it is useful to consider a

sketch that satisfies a minimal requirement: the value of the input is computationally

hard to guess given the sketch. We use the notion of relaxed unpredictability entropy

(Definition 2.2.3) which captures the notion of “hard to guess.”

Definition 5.1.6. (SS, Rec) are an unpredictability-entropy (M, m, m̃, t) secure sketch

that is (✏, ssec)-hard with error � if it satisfies Definition 3.3.2, with the security re-

quirement replaced by Hunp-rlx

✏,ssec
(W |SS(W )) � m̃.

Combining such a secure sketch with a reconstructive extractor yields a compu-

tational fuzzy extractor (Lemma 2.2.7). The conditional unpredictability entropy m̃

must decrease as t increases. We will prove the result for any metric space that is

both neighborhood samplable (Definition 5.1.2) and where picking a random point in

the space is easy.

Definition 5.1.7. A metric space space (M, dis) is ssam-e�ciently-samplable if there

exists a randomized circuit Sample of size ssam that outputs a uniformly random point

in M.

Theorem 5.1.8. Let W be a distribution over a metric space (M, dis) that is ssam

samplable and (sneigh, t) neighborhood samplable. Furthermore, assume that the num-

ber of points within distance t in M is at least some fixed value Bt(·). Let (SS, Rec)

be an unpredictability-entropy (M, H1(W ), m̃, t) secure sketch that is (✏, ssec)-secure

with error �. If ssec � max{t(|Rec| + sneigh), |Rec| + ssam}, then m̃  log |M| �

log |Bt(·)|+ log(1� ✏� t�).
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Proof. Let (X, Y ) be two random variables such that �Dssec ((W, SS(W )), (X, Y ))  ✏.

It su�ces to show that 9I of size ssec such that Pr[I(Y ) = X] � |M|(1�✏�t�)/|Bt(·)|.

Let Bt(x) denote the random variable representing a random neighbor of distance

at most t from x (note that Bt may not be e�ciently samplable, because we are

assuming only that a neighbor a fixed distance is e�ciently samplable). We begin by

showing that Rec must recover points of X.

Claim 5.1.9.

Pr[Rec(Bt(X), Y ) = X] =

Pr[(x, y) (X, Y ) ^ x0  Bt(x) ^ Rec(x0, y) = x] � 1� ✏� t�.

Proof. Suppose that Pr[Rec(Bt(X), Y ) = X] < 1� ✏� t�. We construct the following

distinguisher D 2 Dssec (the distinguisher design is slightly complicated by the fact

that we don’t know at which particular distance t0 the recover procedure is most likely

to fail, so we have to try all distances):

• Input w 2M, s 2 {0, 1}⇤.

• For all 1  t0  t:

w0  Neigh(w, t0).

If Rec(w0, z) 6= w output 0.

• Output 1.

First note that |D| = t(|Rec| + sneigh). Since (SS, Rec) has error � we know that

8w, w0 2M where dis(w, w0)  t

Pr[s SS(w) ^ Rec(w0, s) = w] � 1� �.

This implies that for all 1  t0  t, Pr[Rec(Neigh(W, t0), SS(W )) = W )] � 1 � � and

thus Pr[D(W, SS(W )) = 1] � 1 � t�. If Pr[Rec(Bt(X), Y ) = X] < 1 � ✏ � t� there

must exist at least one 1  t0  t for which Pr[Rec(Neigh(X, t0), Y ) = X] < 1� ✏� t�.

Then

Pr[D(W, SS(W )) = 1]� Pr[D(X, Y ) = 1] � (1� t�)� Pr[Rec(Neigh(X, t0), Y ) = X]

> (1� t�)� (1� t� � ✏) > ✏.
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This is a contradiction and the statement of the claim follows.

We now return to the proof of Theorem 5.1.8. Now define I as follows:

• Input y 2 {0, 1}⇤.

• Sample x0  Sample.

• Output Rec(x0, y).

Note that |I| = |Rec|+ ssam. We now show that I predicts X:

Pr[I(Y ) = X] =

=
X

x,y2M

Pr[(X, Y ) = (x, y)] Pr[I(y) = x]

=
X

x,y2M

Pr[(X, Y ) = (x, y)]
X

x02M

Pr[Sample = x0] Pr[Rec(x0, y) = x]

�

X

x,y2M

Pr[(X, Y ) = (x, y)]
X

x0|dis(x0,x)t

Pr[Sample = x0] Pr[Rec(x0, y) = x]

�

X

x,y2M

Pr[(X, Y ) = (x, y)]
X

x0|dis(x0,x)t

|Bt(·)|Pr[Bt(x) = x0] Pr[Rec(x0, y) = x]

|M|

�
|Bt(·)|

|M|
(1� ✏� t�)

(the last step follows by Claim 5.1.9).

Note: If the input is uniform, the entropy loss is about log |Bt(·)|. An alternative in-

terpretation of this theorem is that fuzzy min-entropy is at most � log |Z|� log |Bt(·)|.

As mentioned at the beginning of Section 5.1, the same entropy loss can be

achieved with information-theoretic secure sketches on the uniform distribution by

using the randomized code-o↵set construction. One interpretation of this result is

that unpredictability secure sketches are not useful on high entropy distributions.

5.1.3 Implications of negative results

In this chapter, we show that secure sketches that provide pseudoentropy su↵er

from similar lower bounds as information-theoretic secure sketches. In Chapter 4 we
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showed a family of distributions that cannot be sketched. This result extends to the

computational setting. By Theorem 4.3.1 and the contrapositive of Corollary 5.1.5,

no sketch can retain HILL entropy for the same family of distributions:

Corollary 5.1.10. Let n be a security parameter and let M = |F|�. There exists a

family of distributions W over M such that for each element W 2 W, Hfuzz

t,1
(W ) =

!(log n) and for any (M,W , m̃, t)-HILL secure sketch (SS, Rec) that is (ssec, ✏sec)-

hard and error �. If ssec � t(|Rec| + � log |F|), t � 4, and ✏sec + t� < 1/16, then

m̃ < 4.

Secure sketches that provide computational unpredictability are implied the virtual-

grey box obfuscation of all polynomial time circuits [BCKP14]. Our negative result

bounds unpredictability away from the size of the metric space. Extraction from un-

predictability entropy can be done using an extractor with a reconstruction property

(Lemma 2.2.7); however, a virtual-grey box obfuscator for all polynomial size circuits

can simply hide a randomly generated key, and therefore extraction is not necessary

to obtain a fuzzy extractor.

Avoiding bounds Both of lower bounds arise because Rec must function as an

error-correcting code for many points of any indistinguishable distribution. It may

be possible to avoid these bounds if Rec outputs a fresh random variable1. Such an

algorithm is called a computational fuzzy conductor (Definition 3.3.7). Some of our

constructions will be computational fuzzy conductors while some will have pseudo-

random outputs and thus be computational fuzzy extractors (Definition 3.3.6).

5.2 Supporting more errors than entropy

In the previous section, we showed that computational versions of secure sketches are

subject to upper bounds on output entropy. We now show to build constructing fuzzy

1If some e�cient algorithm can take the output of Rec and e�ciently transform it back to the
source W , the bounds of Corollary 5.1.5 and Theorem 5.1.8 both apply. This means that we need to
consider constructions that are hard to invert (either information-theoretically or computationally).
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extractors that do not contain a secure sketch (achieving properties that have eluded

secure sketches). In particular, we show an information-theoretic fuzzy extractor that

supports more errors than entropy. We describe this condition in Section 1.3.

The construction first condenses entropy from each block of the source and then

applies a di↵erent fuzzy extractor to the condensed blocks. We’ll denote the fuzzy

extractor on the smaller alphabet as (Gen0, Rep0). A condenser is like a random-

ness extractor but the output is allowed to be slightly entropy deficient. Con-

densers are known with smaller entropy loss than possible for randomness extrac-

tors (e.g. [DPW14]).

Definition 5.2.1. A function cond : Z ! Y is a (m, m̃, ✏)-randomness condenser if

whenever H1(W ) � m, then there exists a distribution Y with H̃1(Y |seed) � m̃ and

(cond(W, seed), seed) ⇡✏ (Y, seed).

The main idea of the construction is that errors are “corrected” on the large

alphabet (before condensing) while the entropy loss for the error correction is incurred

on a smaller alphabet (after condensing).

Construction 5.2.2. Let Z be an alphabet and let W = W1, ...,W� be a distribution

over Z�. We describe Gen, Rep as follows:

Gen

1. Input: w = w1, ..., w�

2. For j = 1, ..., �:

(i) Sample seedi  {0, 1}d.

(ii) Set vi = cond(wi, seedi).

3. Set (key, p0) Gen0(v1, ..., v�).

4. Set p = (p0, seed1, ..., seed�).

5. Output (key, p).

Rep

1. Input: (w0, p = (p0, ~seed))

2. For j = 1, ..., �:

(i) Set v0
i
= cond(w0

i
, seedi).

3. Output key = Rep0(v0, p0).
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For Construction 5.2.2 to be secure we need most blocks to contribute some entropy

to the output. We call this notion a partial block source.

Definition 5.2.3. A distribution W = W1, ...,W� is an (↵, �)-partial block source if

there exists a set of indices J where |J | � � � � such that the following holds:

8j 2 J,8w1, ..., wj�1 2 W1, ...,Wj�1, H1(Wj|W1 = w1, ...,Wj�1 = wj�1) � ↵.

Definition 5.2.3 is a weakening of block sources (introduced by Chor and Goldre-

ich [CG88]), as only some blocks are required to have entropy conditioned on the

past. The choice of conditioning on the past is arbitrary: a more general su�cient

condition is that there exists some ordering of indices where most items have entropy

conditioned on all previous items in this ordering (for example, a “partial” reverse

block source [Vad03]). This construction is secure and it supports distributions with

more errors than entropy.

Lemma 5.2.4. Let W be the family of (↵ = ⌦(1), �  �(1 � ⇥(1)))-partial block

sources over Z� and let cond : Z⇥{0, 1}d
! Y be a (↵, ↵̃, ✏cond)-randomness conduc-

tor. Define V as the family of all distributions with min-entropy at least ↵̃(���) and

let (Gen0, Rep0) be (Y�,V , , t, ✏fext)-fuzzy extractor with error �.2 Then (Gen, Rep) is

a (Z�,W , , t, �✏cond + ✏fext)-fuzzy extractor with error �.

Proof of Lemma 5.2.4. Let W 2W . It su�ces to argue correctness and security. We

first argue correctness. When wi = w0
i
, then cond(wi, seedi) = cond(w0

i
, seedi) and

thus vi = v0
i
. Thus, for all w, w0 where dis(w, w0)  t, then dis(v, v0)  t. Then by

correctness of (Gen0, Rep0), Pr[(r, p) Gen0(v) ^ r0  Rep(v0, p) ^ r0 = r] � 1� �.

We now argue security. Denote by seed the random variable consisting of all �

seeds and V the entire string of generated V1, ..., V�. To show that

Key|P, seed ⇡�✏cond+✏fext
U |P, seed,

it su�ces to show that H̃1(V |seed) is �✏cond close to a distribution with average

min-entropy ↵̃(� � �). The lemma then follows by the security of (Gen0, Rep0).

2We actually need (Gen0,Rep0) to be an average case fuzzy extractor (see [DORS08, Definition 4]
and the accompanying discussion). Most known constructions of fuzzy extractors are average-case
fuzzy extractors. For simplicity we refer to Gen0,Rep0 as simply a fuzzy extractor.
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We now argue that there exists a distribution Y where H̃1(Y |seed) � ↵̃(� � �)

and (V, seed1, ..., seed�) ⇡ (Y, seed1, .., seed�). First note since W is (↵, �)-partial

block distribution that there exists a set of indices J where |J | � ��� such that the

following holds:

8j 2 J,8w1, ..., wj�1 2 W1, ...,Wj�1, H1(Wj|W1 = w1, ...,Wj�1 = wj�1) � ↵.

Then consider the first element of j1 2 J , 8w1, ..., wj1�1 2 W1, ...,Wj1�1,

H1(Wj1
|W1 = w1, ...,Wj1�1 = wj1�1) � ↵.

Thus, there exists a distribution Yj1
with H̃1(Yj1

|seedj1
) � ↵̃ such that

(cond(Wj1
, seedj1

), seedj1
, W1, ...,Wj1�1) ⇡✏cond

(Yj1
, seedj1

, W1, ...,Wj1�1)

and since (seed1, ..., seedj1
) are independent of these values

(cond(Wj1
, seedj1

), Wj1�1, ...,W1, seedj1
, ..., seed1)

⇡✏cond
(Yj1

, Wj1�1, ...,W1, seedj1
, , ..., seed1)

let Zj1

def

= (Yj1
, cond(Wj1�1, seedj1�1), ..., cond(W1, seed1)) and note that

H̃1(Zj1
|seed1, ..., seedj1

) � ↵0.

Applying a deterministic function does not increase statistical distance and thus,

(cond(Wj1
, seedj1

), cond(Wj1�1, seedj1�1), ..., cond(W1, seed1), seedj1
, ..., seed1)

⇡�✏cond
(Zj1

, seedj1
, ..., seed1)

By a hybrid argument there exists a distribution Z with H̃1(Z|seed) � ↵̃(� � �)

where

(cond(W�, seed�), ..., cond(W1, seed1), seed�, ..., seed1) ⇡�✏cond
(Z, seed�, ..., seed1).

This completes the proof.
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More errors than entropy In this section we show that Construction 5.2.2 sup-

ports partial block sources with more errors than entropy. The structure of a partial

block source implies that H1(W ) � ↵(� � �) = ⇥(�). We assume that H1(W ) =

⇥(�). The condenser of Dodis et al [DPW14] has a constant entropy loss, so ↵� ↵̃ =

⇥(1). This means that the input entropy to (Gen0, Rep0) is ⇥(�). We assume that

the new alphabet Y is of constant size. Standard fuzzy extractors on constant size

alphabets correct a constant fraction of errors at a entropy loss of ⇥(�), yielding

 = ⇥(�). Thus, our construction is secure for distributions with more errors than

entropy whenever |Z| = !(1). More formally:

# Errors�Entropy = log |Bt|�H1(W ) � t log |Z|�⇥(�)� = ⇥(�) log |Z|�⇥(�) > 0

That is, there exists a super-constant alphabet size for which Construction 5.2.2 is

secure with more errors than entropy.
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Chapter 6

Moving to Computational Security

For the remainder of this work we switch to fuzzy extractors that provide computa-

tional security (Definition 3.3.6). We begin by showing a fuzzy extractor whose output

key is as long as the starting entropy. This is impossible in the information-theoretic

setting (unless all points of the distribution are far apart and Hfuzz

t,1
(W ) = H1(W )).

6.1 Computational Fuzzy Extractor based on LWE

In this section, a computational fuzzy extractor based on the learning with errors

assumption. Security of our construction depends on the source W . We first consider

a uniform source W ; we consider other distributions in Section 6.2. Our construction

uses the code-o↵set construction (described in Construction 3.3.4) instantiated with

a random linear code over a finite field Fq. Let Decodet be an algorithm that decodes

a random linear code with at most t errors (we will present such an algorithm later,

in Section 6.1.2).

Construction 6.1.1. Let n be a security parameter and let � � n. Let q be a prime.

Define Gen, Rep as follows:

Gen

1. Input: w  W (where W is some

distribution over F�

q
).

2. Sample A 2 F�⇥n

q
,x 2 Fn

q
uniformly.

3. Compute p = (A,Ax + w),

key = x1,...,n/2.

4. Output (key, p).

Rep

1. Input: (w0, p).

2. Parse p as (A, c);

let b = c� w0.

3. Let x = Decodet(A,b)

4. Output key = x1,...,n/2.
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Intuitively, security comes from the computational hardness of decoding random

linear codes with a high number of errors (introduced by w). In fact, we know that

decoding a random linear code is NP-hard [BMvT78]; however, this statement is not

su�cient for our security goal, which is to show �Dssec ((X1,...,n/2, P ), (Un/2 log q, P ))  ✏.

Furthermore, this construction is only useful if Decodet can be e�ciently implemented.

The rest of this section is devoted to making these intuitive statements precise.

We describe the LWE problem and the security of our construction in Section 6.1.1.

We describe one possible polynomial-time Decodet (which corrects more errors than

is possible by exhaustive search) in Section 6.1.2. In Section 6.1.3, we describe pa-

rameter settings that allow us to extract as many bits as the input entropy, resulting

in a lossless construction. In Section 6.1.4, we compare Construction 6.1.1 to us-

ing a sketch-and-extract approach (Lemma 3.3.3) instantiated with a computational

extractor.

6.1.1 Security of Construction 6.1.1

The LWE problem was introduced by Regev [Reg05, Reg10] as a generalization of

“learning parity with noise.” For a complete description of the LWE problem and

related lattices problems (which we do not define here) see [Reg05]. We now recall

the decisional version of the problem.

Definition 6.1.2 (Decisional LWE). Let n be a security parameter. Let � = �(n) =

poly(n) be an integer and q = q(n) = poly(n) be a prime1. Let A be the uniform dis-

tribution over F�⇥n

q
, X be the uniform distribution over Fn

q
and � be an arbitrary dis-

tribution on F�

q
. The decisional version of the LWE problem, denoted dist-LWEn,�,q,�,

is to distinguish the distribution (A,AX + �) from the uniform distribution over

(F�⇥n

q
, F�

q
).

We say that dist-LWEn,�,q,� is (✏, ssec)-secure if no (probabilistic) distinguisher of

size ssec can distinguish the LWE instances from uniform except with probability ✏. If

1Unlike in common formulations of LWE, where q can be any integer, we need q to be prime for
decoding.
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for any ssec = poly(n), there exists ✏ = ngl(n) such that dist-LWEn,�,q,� is (✏, ssec)-

secure, then we say it is secure.

Regev [Reg05] and Peikert [Pei09] show that dist-LWEn,�,q,� is secure when the

distribution � of errors is Gaussian, as follows. Let  ̄⇢ be the discretized Gaussian

distribution with variance (⇢q)2/2⇡, where ⇢ 2 (0, 1) with ⇢q > 2
p

n. If GAPSVP

and SIVP are hard to approximate (on lattices of dimension n) within polynomial

factors for quantum algorithms, then dist-LWEn,�,q, ̄m
⇢

is secure. (A recent result of

Brakerski et al. [BLP+13] shows security of LWE based on hardness of approximating

lattices problems for classical algorithms. We have not considered how this result can

be integrated into our analysis.)

The above formulation of LWE requires the error term to come from the discretized

Gaussian distribution, which makes it di�cult to use it for constructing fuzzy extrac-

tors (because using w and w0 to sample Gaussian distributions will increase the dis-

tance between the error terms and/or reduce their entropy). Recent work of Döttling

and Müller-Quade [DMQ13] shows the security of LWE, under the same assumptions,

when errors come from the uniform distribution over a small interval2. This allows

us to directly encode w as the error term in an LWE problem by splitting it into �

blocks. The size of these blocks is dictated by the following result of Döttling and

Müller-Quade:

Lemma 6.1.3. [DMQ13, Corollary 1] Let n be a security parameter. Let q =

q(n) = poly(n) be a prime and � = �(n) = poly(n) be an integer with � � 3n. Let

� 2 (0, 1) be an arbitrarily small constant and let ⇢ = ⇢(n) 2 (0, 1/10) be such that

⇢q � 2n1/2+��. If the approximate decision-version of the shortest vector problem

(GAPSVP) and the shortest independent vectors problem (SIVP) are hard within

a factor of Õ(n1+��/⇢) for quantum algorithms in the worst case, then, for � the

uniform distribution over [�⇢q, ⇢q]�, dist-LWEn,�,q,� is secure.

2Micciancio and Peikert provide a similar formulation in [MP13]. The result Döttling and Müller-
Quade provides better parameters for our setting.
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To extract pseudorandom bits, we use a result of Akavia, Goldwasser, and Vaikun-

tanathan [AGV09] to show that X has simultaneously many hardcore bits. The result

says that if dist-LWE(n�k,�,q,�) is secure then any k variables of X in a dist-LWE(n,�,q,�)

instance are hardcore. We state their result for a general error distribution (noting

that their proof does not depend on the error distribution):

Lemma 6.1.4. [AGV09, Lemma 2] If dist-LWE(n�k,�,q,�) is (✏, ssec) secure, then

�Dssec0 ((X1,...,k,A,AX + �), (Uk log q,A,AX + �))  ✏ ,

where A denotes the uniform distribution over Fm⇥n

q
, X denotes the uniform distri-

bution over Fn

q
, X1,...,k denote the first k coordinates of x, and s0

sec
⇡ ssec � n3.

The security of Construction 6.1.1 follows from Lemmas 6.1.3 and 6.1.4 when

parameters are set appropriately (see Theorem 6.1.8), because we use the hardcore

bits of X as our key.

6.1.2 E�ciency of Construction 6.1.1

Construction 6.1.1 is useful only if Decodet can be e�ciently implemented. We need

a decoding algorithm for a random linear code with t errors that runs in polynomial

time. We present a simple Decodet that runs in polynomial time and can correct

⇥(log n) errors (note that this corresponds to a super-polynomial number of possible

error patterns). This algorithm is a proof of concept, and neither the algorithm nor

its analysis have been optimized for constants. An improved decoding algorithm

can replace our algorithm, which will increase our correcting capability and improve

Construction 6.1.1.

Construction 6.1.5. We consider a setting of (n, �, q,�) where � � 3n. We describe

Decodet:

1. Input A,b = Ax + w � w0

2. Randomly select rows without replacement i1, ..., i2n  [1, �].
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3. Restrict A,b to rows i1, ..., i2n; denote these Ai1,...,i2n ,bi1,...,i2n.

4. Find n rows of Ai1,...,i2n that are linearly independent.

If no such rows exist, output ? and stop.

5. Denote by A0,b0 the restriction of Ai1,...,i2n ,bi1,...,i2n (respectively) to these rows.

Compute x0 = (A0)�1b0.

6. If b�Ax0 has more than t nonzero coordinates, go to step (2).

7. Output x0.

Each step is computable in time O(n3). For Decodet to be e�cient, we need t to

be small enough so that with probability at least 1

poly(n)
, none of the 2n rows selected

in step 2 have errors (i.e., so that w and w0 agree on those rows). If this happens, and

Ai1,...,i2n has rank n (which is highly likely), then x0 = x, and the algorithm terminates.

However, we also need to ensure correctness: we need to make sure that if x0 6= x,

we detect it in step 6. This detection will happen if b�Ax0 = A(x� x0) + (w�w0)

has more than t nonzero coordinates. It su�ces to ensure that A(x�x0) has at least

2t + 1 nonzero coordinates (because at most t of those can be zeroed out by w�w0),

which happens whenever the code generated by A has distance 2t + 1.

Remark: Fuzzy extractor definitions make no guarantee about Rep behavior

when the distance between w and w0 is larger than t. Our Decode algorithm will

never output an incorrect key (with high probability over the coins of Gen) but may

not terminate. It may be preferable to output the wrong key or ? when dis(w, w0) > t.

Setting t = ⇥( �

n
log n) is su�cient to ensure e�ciency when dis(w, w0)  t. Ran-

dom linear codes have distance at least ⇥( �

n
log n) with probability 1 � e�⌦(n) (the

exact statement is in Corollary 6.1.7), so this also ensures correctness. The formal

statement is below:

Lemma 6.1.6 (E�ciency of Decodet when t  d(�/n� 2) log n). Let d be a positive

constant and assume that dis(W,W 0)  t where t  d( �

n
� 2) log n. Then Decodet
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runs in expected time O(n4d+3) operations in Fq (this expectation is over the choice

of random coins of Decodet, regardless of the input, as long as dis(w, w0)  t). It

outputs X with probability 1�e�⌦(n) (this probability is over the choice of the random

matrix A and random choices made by Decodet).

Proof. We first show that our code has high distance with overwhelming probability.

In our construction � = poly(n) � 2n and � = O(log n/n). This setting of parameters

satisfies Theorem 2.3.10:

Lemma 6.1.7. Let n be a parameter and let � = poly(n) � 2n. Let q be a prime and

⌧ = ⇥( �

n
log n). For large enough values of n, when A 2 F�⇥n

q
is drawn uniformly,

the code generated by A has distance at least ⌧ with probability at least 1� e�⌦(�)
�

1� e�⌦(n).

Proof. Let c be some constant. Let � = ⌧/� = c log n

n
. We show the corollary for the

case when � = 2n (increasing the size of � only increases the relative distance). It

su�ces to show that for su�ciently large n, there exists ✏ > 0 where 1�Hq(
c log n

n
)�✏ =

1/2 or equivalently that Hq(
c log n

m
) < 1/2 as then setting ✏ = 1/2�Hq(

c log n

n
) satisfies

Theorem 2.3.10. For su�ciently large n:

•
c log n

n
< 1/2, so we can work with the binary entropy function H2.

•
c log n

n
< .1 < 1/2 and thus Hq(

c log n

n
) < Hq(.1).

Putting these statements together, for large enough n, Hq(
c log n

n
) < Hq(.1) < H2(.1) <

1/2 as desired. This completes the proof.

Note that Decodet will stop if w and w0 agree on all the rows selected in Step 2

(it may also stop for other reasons—namely, in step 4; but we do not use this fact to

bound the expected running time). The probability of each selected row having an
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error is at most t

��i
where i is the number of rows already selected. That is,

Pr[i1, ..., i2n have no errors] �
2n�1Y

i=0

✓
1�

t

� � i

◆
�

2n�1Y

i=0

 
1�

d
�

�

n
� 2
�
log n

� � i

!

�

2n�1Y

i=0

✓
1�

d log n

n

✓
� � 2n

� � i

◆◆
�

2n�1Y

i=0

✓
1�

d log n

n

◆

=

✓
1�

d log n

n

◆2n

=

 ✓
1�

d log n

n

◆ n
d log n

!2d log n

�
1

42d log n
=

1

n4d
.

(The second-to-last step holds as long as n � 2d log n.) Because at each iteration,

we select 2n rows independently at random, the expected number of iterations is at

most n4d; each iteration takes O(n3) operations in Fq, which gives us the expected

running time bound.

The probability that Decodet outputs ? is bounded by

Pr[Decodet !?] 
1X

j=1

Pr[Decodet !? in j-th iteration of step 4]

=
1X

j=1

Pr[Decodet reaches j iterations ^ rank(Ai1,...,i2n) < n]



1X

j=1

Pr[i1, ..., i2n had errors j � 1 times ^ rank(Ai1,...,i2n) < n]

=
1X

j=1

Pr[i1, ..., i2n had errors j � 1 times] · Pr[rank(Ai1,...,i2n) < n]



1X

j=1

✓
1�

1

n4d

◆j�1

· q�n

= n4de�⌦(n) = e�⌦(n) .

The third line from the bottom follows from the fact that the locations of the errors

are assumed to be independent of the sketch, and therefore independent of the matrix

A. The second line from the bottom follows from Claim 2.3.11 when � = n; note

that, because we use the union bound and evaluate the probability separately for

each value of j, we can treat Ai1,...,i2n as a randomly chosen 2n⇥ n matrix, ignoring
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the fact that these matrices are correlated.

We claim that if the code generated by A has distance at least 2t+1, then Decodet

will output ? or the correct x0 = x. Indeed, suppose x0 6= x. Since A(x� x0) has at

least 2t + 1 nonzero coordinates by the minimum distance of the code generated by

A, and at most t of those can be zeroed out by the addition of w � w0, such an x0

will not pass Step 6.

The probability that the code generated by A has distance lower than 2t+1 is at

most e�⌦(n) (see Corollary 6.1.7), the probability of outputting ? is also e�⌦(n) (com-

puted above). This gives the correctness bound for Decodet.

6.1.3 Lossless Computational Fuzzy Extractor

We now state a setting of parameters that yields a lossless construction. The intuition

is as follows. We are splitting our source into � blocks each of size log ⇢q (from

Lemma 6.1.3) for a total input entropy of � log ⇢q. Key is derived from hardcore

bits of X: X1,...,k and is of size k log q (from Lemma 6.1.4). Thus, to achieve a

lossless construction we need k log q = � log ⇢q. In other words, in order to decode

a meaningful number of errors, the vector w is of higher dimension than the vector

X, but each coordinate of w is sampled using fewer bits than each coordinate of X.

Thus, by increasing the size of q (while keeping ⇢q fixed) we can set k log q = � log ⇢q,

yielding a |key| = |W |. The formal statement is below.

Theorem 6.1.8. Let n be a security parameter and let the number of errors t = c log n

for some positive constant c. Let d be a positive constant (giving us a tradeo↵ between

running time of Rep and |w|). Consider the Hamming metric over the alphabet Z =

[�2b�1, 2b�1], where b = log 2(c/d+2)n2 = O(log n). Let W be uniform over M = Z
�,

where � = (c/d + 2)n = O(n). If GAPSVP and SIVP are hard to approximate

within polynomial factors using quantum algorithms, then there is a setting of q =

poly(n) such that for any polynomial ssec = poly(n) there exists ✏ = ngl(n) such

that the following holds: Construction 6.1.1 is a (M, W, � log |Z|, t)-computational

fuzzy extractor that is (✏, ssec)-hard with error � = e�⌦(n). The generate procedure

Gen takes O(n2) operations over Fq, and the reproduce procedure Rep takes expected

time O(n4d+3) operations over Fq.
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Proof. Security follows by combining Lemmas 6.1.3 and 6.1.4; e�ciency follows by

Lemma 6.1.6. For a more detailed explanation of the various parameters and con-

straints see Section 6.4.

6.1.4 Comparison with computational extractor-based constructions

An alternative approach to building a computational fuzzy extractor is to use a com-

putational extractor (e.g., [Kra10, BDK+11, DSGKMk12]) in place of the information-

theoretic extractor in the sketch-and-extract construction. We will call this approach

sketch-and-comp-extract. (A simple example of a computational extractor is a pseu-

dorandom generator applied to the output of an information-theoretic extractor; note

that LWE-based pseudorandom generators exist [AIK06].)

This approach (specifically, its analysis via Lemma 3.3.3) works as long as the

amount of entropy m̃ of w conditioned on the sketch s remains high enough to run a

computational extractor. However, as discussed in the introduction, secure sketches

are subject to strong lower bounds. For many practical sources, there are no known

constructions of secure sketches.

In contrast, our approach does not require the entropy of w conditioned on

p = (A,AX+w) to be high enough for a computational extractor. Instead, we require

that w is not computationally recoverable given p. This requirement is weaker—in

particular, in our construction, w may have no information-theoretic entropy condi-

tioned on p.

Unfortunately, the above construction comes with strong limitations on the error

tolerance and supported sources. Herder et al. [HRvD+14] subsequently improved

the error-tolerance for some sources using confidence information (discussion in the

introduction). In Chapter 7, we show practical constructions based on point obfus-

cation. These constructions do not use sketch-then-comp-extract. In the next section,

we show that Construction 6.1.1 is secure for more sources than just uniform W .
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6.2 Moving to Nonuniform Sources

In this section, we show that Construction 6.1.1 is secure for a particular class of

distributions called symbol-fixing. First we define a symbol fixing source (from [KZ07,

Definition 2.3]):

Definition 6.2.1. Let W = (W1, ...,W�+↵) be a distribution where each Wi takes

values over an alphabet Z. We say that it is a (� + ↵, �, |Z|) symbol fixing source if

for ↵ indices i1, . . . , i↵, the symbols Wi↵ are fixed, and the remaining m symbols are

chosen uniformly at random. Note that H1(W ) = � log |Z|.

Symbol-fixing sources are a very structured class of distributions. However, ex-

tending Construction 6.1.1 to such a class is not obvious. Although symbol-fixing

sources are deterministically extractible [KZ07], we cannot first run a deterministic

extractor before using Construction 6.1.1. This is because we need to preserve dis-

tance between w and w0 and an extractor must not preserve distance between input

points. We present an alternative approach, showing security of LWE directly with

symbol-fixing sources.

The following theorem states the main technical result of this section, which is

of potential interest outside our specific setting. The result is that dist-LWE with

symbol-fixing sources is implied by standard dist-LWE (but for n and m reduced by

the amount of fixed symbols).

Theorem 6.2.2. Let n be a security parameter, �, ↵ be polynomial in n, and q =

poly(n) be a prime and � 2 Z+ be such that q�� = ngl(n). Let U denote the uniform

distribution over Z� for an alphabet Z ⇢ Fq, and let W denote an (�+↵, �, |Z|) sym-

bol fixing source over Z�+↵. If dist-LWEn,�,q,U is secure, then dist-LWEn+↵+�,�+↵,q,W

is also secure.

Theorem 6.2.2 also holds for an arbitrary error distribution (not just uniform

error) in the following sense. Let �0 be an arbitrary error distribution. Define � as

the distribution where � dimensions are sampled according to �0 and the remaining
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dimensions have some fixed error. Then, security of dist-LWEn,�,q,�0 implies security

of dist-LWEn+↵+�,�+↵,q,�. We show this stronger version of the theorem in Section 6.3.

The intuition for this result is as follows. Providing a single sample with no

error “fixes” at most a single variable. Thus, if there are significantly more variables

than samples with no error, search LWE should still be hard. We are able to show

a stronger result that dist-LWE is still hard. The nontrivial part of the reduction

is using the additional ↵ + � variables to “explain” a random value for the last ↵

samples, without knowing the other variables. The � parameter is the slack needed

to ensure that the “free” variables have influence on the last ↵ samples. A similar

theorem for the case of a single fixed dimension was shown in concurrent work by

Brakerski et al. [BLP+13, Lemma 4.3]. The proof techniques of Brakerski et al. can

be extended to our setting with multiple fixed dimensions, improving the parameters

of Theorem 6.2.2 (specifically, removing the need for �).

Theorem 6.2.2 allows us to construct a lossless computational fuzzy extractor from

block-fixing sources:

Theorem 6.2.3. Let n be a security parameter and let t = c log n for some posi-

tive constant c. Let d  c be a positive constant and consider the Hamming metric

over the alphabet Z = [�2b�1, 2b�1], where b ⇡ log 2(c/d + 2)n2 = O(log n). Let

M = Z
�+↵ where � = (c/d + 2)n = O(n) and ↵  n/3. Let W be the class of

all (� + ↵, �, |Z|)-symbol fixing sources. If GAPSVP and SIVP are hard to approxi-

mate within polynomial factors using quantum algorithms, then there is a setting of

q = poly(n) such that for any polynomial ssec = poly(n) there exists ✏ = ngl(n) such

that the following holds: Construction 6.1.1 is a (M,W , � log |Z|, t)-computational

fuzzy extractor that is (✏, ssec)-hard with error � = e�⌦(n). The generate procedure

Gen takes O(n2) operations over Fq, and the reproduce procedure Rep takes expected

time O(n4d+3 log n) operations over Fq.

Proof. Security follows by Lemmas 6.1.3 and 6.1.4 and Theorem 6.2.2 . E�ciency fol-

lows by Lemma 6.1.6. For a more detailed explanation of parameters see Section 6.4.1.
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6.3 Proof of Theorem 6.2.2

Proof. We assume that all of the fixed blocks are located at the end and their fixed

value is 0. If the blocks are fixed to some other value, the reduction is essentially the

same. In the reduction, the distinguisher is allowed to depend on the source and can

know the positions of the fixed blocks and their values. For a matrix A we will denote

the i-th row by ai. For a set T of column indices, we denote by AT the restriction

of the matrix A to the columns contained in T . Similarly, for a vector x we denote

by xT the restriction of x to the variables contained in T . We use similar notation

for the complement of T , denoted T c. For a matrix or vector we use T to denote the

transpose. We use i as a index into matrix rows and the error vector and j as an

index into columns and the solution vector.

Let n be a security parameter, �, q, ↵ = poly(n). Let � be such that q�� = ngl(n).

All operations are computed modulo q, and we omit “ mod q” notation. Let �0 be

some error distribution over Fm

q
and let � over Fm+n

q
be defined by sampling �0 to

obtain values on dimensions 1, ...,m and then appending ↵ 0s.

Let D be a distinguisher that breaks dist-LWE(�+↵),(n+↵+�),q,� with advantage ✏ >

1/poly(n). Let A denote the uniform distribution over F(�+↵)⇥(n+↵+�)

q , X denote the

uniform distribution over F(n+↵+�)

q , and U denote the uniform distribution over F�+↵

q

. Then

|Pr[D(A,AX + �) = 1]� Pr[D(A, U) = 1]| > ✏.

We build a distinguisher that breaks dist-LWE�,n,q,�. Let A0 denote the uniform

distribution over F�⇥n

q
, X 0 denote the uniform distribution over Fn

q
, and U 0 denote

the uniform distribution over F�

q
. We will build a distinguisher D0 of polynomial size

for which

|Pr[D0(A0,A0X 0 + �0) = 1]� Pr[D0(A0, U 0) = 1]| > (✏� ngl(n))(1� ngl(n)) ⇡ ✏.

(6.1)

D0 will make a single call to D, so we focus on how to prepare a random block-fixing

instance for D from the random instance that D0 is given. The code for D0 is given

in Figure 6·1.

The distinguisher D0 has an advantage when S is of rank ↵. This occurs with

overwhelming probability:

Claim 6.3.1. Let S
$
 F↵⇥(↵+�)

q be randomly generated. Then Pr[rank(S) = ↵] �
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1. Input A0,b0, where A0
$
 F�⇥n

q
and b0 is either uniform over F�

q
or b0 =

A0x0 + e0 for e0
$
 �0 and uniform x0

$
 Fn

q
.

2. Choose R
$
 F↵⇥n

q
uniformly at random. Initialize Q 2 F�⇥(↵+�)

q to be the
zero matrix.

3. Let b⇤ = (b0, b⇤
�+1

, . . . , b⇤
�+↵

), for uniformly chosen (b⇤
�+1

, . . . , b⇤
�+↵

)
$
 F↵

q
.

4. Choose S
$
 F↵⇥(↵+�)

q uniformly at random.

If rank(S) < ↵, stop and output a random bit.

5. Find a set of ↵ linearly independent columns in S. Let T be the set of
indices of these columns.

6. For all 1  j  ↵ + �, j /2 T :

Choose xn+j

$
 Fq uniformly at random.

For i = 1, ..., �:

Choose Qi,j

$
 Fq uniformly at random.

Set b⇤
i

= b⇤
i
+ Qi,jxn+j.

7. Initialize A⇤ =
⇣

A0 Q
R S

⌘
.

8. For i = 1, ..., �:

Choose a row vector ⇡i  F1⇥↵

q
uniformly at random.

Set ai  a⇤
i
+ ⇡i(R||S)

Set bi  b⇤
i
+ ⇡i(b⇤�+1

, ..., b⇤
�+↵

)T

9. For i = � + 1, . . . , � + ↵:

Set ai  a⇤
i

Set bi = b⇤
i
.

10. Output D(A,b).

Figure 6·1: A PPT D0 that distinguishes LWE using distinguisher for
LWE w/ block fixing source
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1� ngl(n).

Proof. Direct result of Claim 2.3.11 because q�� = ngl(n).

The probability that a random S is not full rank is ngl(n) so the distinguisher D

must still have an advantage when the matrix S is full rank. That is,

|Pr[D(A,AX + �) = 1|rank(S) = ↵]�Pr[D(A, U) = 1|rank(S) = ↵]| > ✏� ngl(n).

It su�ces to show that D0 prepares a good instance for D conditioned on S being

full rank. We show this in the following three claims:

1. If A0 is a random matrix then A is a random matrix subject to the condition

that rank(S) = ↵.

2. If b0 = A0x0 + e0 for uniform A0 and x0, then 9x (uniformly distributed and

independent of A and e0) such that b = Ax + e, where ei = e0
i
for 1  i  �

and ei = 0 otherwise.

3. If the conditional distribution b0 |A0 is uniform, then the conditional distribu-

tion b |A is also uniform.

Claim 6.3.2. The matrix A is distributed as a uniformly random choice from the set

of all matrices whose bottom-right ↵⇥ (↵ + �) submatrix S satisfies rank(S) = ↵.

Proof. The bottom ↵ rows of A (namely, R|S) are randomly generated (conditioned

on rank(S) = ↵). The top left � ⇥ n quadrant of A is also random, because it is

produced as a sum of a uniformly random A0 with some values that are uncorrelated

with A0. The submatrix of the top-right � ⇥ (↵ + �) quadrant corresponding to

QT c (recall this is the restriction of Q to the columns not in T ) is also random,

because it is initialized with random values to which some uncorrelated values are

then added. It is important to note that all these values are independent of ⇡i values.

Thus, we restrict attention to the � ⇥ ↵ submatrix of A that corresponds to QT

in A⇤ (note that these values are 0 in A⇤). Consider a particular row i. That row

is computed as ⇡iST . Since ST is a full rank square matrix and ⇡i is uniformly and

independently generated, that row is also uniform and independent of other entries

in A.

Claim 6.3.3. If D0 is provided with input distributed as A0,b0 = A0x0 + e0 then

b = Ax + e, where
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• ei = e0
i
for 1  i  �,

• ei = 0 for � < i  � + ↵,

• xj = x0
j

for 1  j  n,

• and xj is uniform and independent of A and e0 for n < j  n + ↵ + �,

Proof. Partially define x as xj = x0
j

if 1  j  n and xj as the value generated in

step 6 for j > n and j 62 T . Define the remaining variables xT as the solution to the

following system of equations.

STxT =

0

@
b⇤
�+1

...
b⇤
�+↵

1

A�Rx0 � ST cxT c (6.2)

A solution xT exists as ST is full rank. Moreover, it is uniform and independent of A

and e, because b⇤
�+1

, . . . , b⇤
�+↵

are uniform and independent of A and e.

We now show that b⇤ = A⇤x + e. All entries in matrix Q corresponding to

variables in T are set to zero. Thus, the values of xT do not a↵ect b⇤
i

for 1  i  �.

The values of xT c are manually set, and Qi,jxj is added to the corresponding b⇤
i
.

Thus, for 1  i  �, we have b⇤ = A⇤x+e. For � < i, this constraint is also satisfied

by the values of xT set in Equation 6.2.

Thus, it remains to show that step 8 preserves this solution. We now show that

for all rows 1  i  �, if b⇤
i

= a⇤
i
x + ei then bi = aix + ei. Recall the other rows are

not modified. We have the following for 1  i  �:

aix + ei = (a⇤
i
+ ⇡i(R||S))x + ei

= a⇤
i
x + ei + ⇡i(R||S)x

= b⇤
i
+ ⇡i(R||S)x

Recall that bi = b⇤
i
+ ⇡i(b⇤�+1

, ..., b⇤
�+k

). We consider the product (R||S)x. It su�ces
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to show that (R||S)x = (b⇤
�+1

, ..., b⇤
�+↵

),

(R||S)x = R

0

@
x1

...
xn

1

A+ ST cxT c + STxT

= R

0

@
x1

...
xn

1

A+ ST cxT c +

0

@
b⇤
�+1

...
b⇤
�+↵

1

A�R

0

@
x1

...
xn

1

A� ST cxT c

=

0

@
b⇤
�+1

...
b⇤
�+↵

1

A

This completes the proof of the claim.

Claim 6.3.4. If the conditional distribution b0 |A0 is uniform, then b |A is also

uniform.

Proof. Since R,S, and Q are chosen independently of b0, the distribution b0 |A⇤ is

uniform. Let b⇤ be the vector generated after step 6. Its first � coordinates are

computed by adding the uniform vector b0 to values that are independent of b⇤,

and its remaining ↵ coordinates b⇤
�+1

, . . . , b⇤
�+↵

are chosen uniformly. Thus b⇤ |A⇤ is

uniform.

Let ⇧ represent the matrix formed by ⇡i. It is independent of b⇤ and A⇤, so

b⇤ | (A⇤,⇧) is uniform. Let ⇧0 =
⇣

I� ⇧
0 I↵

⌘
. Note that b = ⇧0b⇤. Since b⇤ | (A⇤,⇧)

is uniform, and ⇧0 is invertible, b | (A⇤,⇧) must also be uniform. Since A is a

deterministic function of A⇤ and ⇧ (assuming Step 5 is deterministic—if not, we can

fix the coins used), the distribution b |A is the same as b | (A⇤,⇧) and is thus also

uniform.

Finally, the reduction runs in polynomial time and together Claims 6.3.2, 6.3.3,

and 6.3.4 show that when rank(S) = ↵ the distinguisher D0 properly prepares the
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instance thus,

|Pr[D0(A,AX + �) = 1]� Pr[D0(A, U) = 1]|

= (|Pr [D0(A0,u0) = 1|rank(S) = ↵]

� Pr [D0(A0,b0 = A0x + e) = 1|rank(S) = ↵] |) Pr[rank(S) = ↵]

= (|Pr[D(A,AX + �) = 1|rank(S) = ↵]

� Pr[D(A, U) = 1|rank(S) = ↵]|) Pr[rank(S) = ↵]

� (✏� ngl(n))(1� ngl(n)) ⇡ ✏

Where the second line follows because we can detect when rank(S) < ↵ and output a

random bit in this case. Thus, Equation (6.1) is satisfied, this completes the proof.

6.4 Parameter Settings for Construction 6.1.1

In this section, we explain the di↵erent parameters that go into our construction.

In Theorem 6.1.8 we give a lossless fuzzy extractor from a security parameter n and

an error t. In this section, we discuss constraints imposed by 1) e�cient decoding

2) maintaining security of the LWE instance and 3) ensuring no entropy loss of the

construction. We begin by reviewing the parameters that make up our construction:

• |W |: The length of the source.

• t: Number of errors that can be supported.

• n: LWE security parameter (i.e., number of field elements in X), which must

be greater than some minimum value n0 for security.

• q: The size of the field.

• ⇢: The fraction of the field needed for error sampling.

• �: The length of the string w in symbols.

• k: The number of hardcore bits in X (from Lemma 6.1.4).
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We will split the source |W | into � blocks each of size 2⇢q + 1 (that is, |W | =

� log(2⇢q + 1)). We will ignore the parameter |W | and focus on t, n, q, ⇢, and �. As

stated above we have three constraints:

• Maintain security of LWE. If we assume GAPSVP and SIVP are hard to ap-

proximate within polynomial factors then Lemma 6.1.3 says that we get security

for all n greater than some minimum n0 and q = poly(n) and ⇢q � 2n1/2+�� =

poly(n). The only reason to increase ⇢q over this minimum amount (other than

security) is if the number of errors in W decreases with a slightly larger block

size. We ignore this e↵ect and assume that ⇢q = 2n1/2+��.

• Maintain e�cient decoding of Construction 6.1.5. Using Lemma 6.1.6, this

means that t  d log n(�/n� 2).

• Minimize entropy loss of the construction. We will output X1,...,k so the entropy

loss of the construction is |W |� |X1,...,k|. We want the entropy loss to be zero,

that is, |W | = |X1,...,k|. Substituting, one has � log 2⇢q + 1 = k log q.

Collecting constraints we can support any setting where t, n, q, ⇢, �, k satisfy the fol-

lowing constraints (for constants d, f):

n0 < n� k

t  d log n
⇣�

n
� 2
⌘

q = nf

⇢q = 2n1/2+��

� log(2⇢q + 1) = k log q
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Substituting q = nf and ⇢q = 2n1/2+�� yields the following system of equations:

n0 < n� k

t  d log n
⇣�

n
� 2
⌘

� log(4n1/2+�� + 1) = k log nf

This is the most general form of our construction, we can support any n, t, � that

satisfy these equations for constants d, f . However, the last equation may have no

solution for f constant. Putting the last equation in terms of f one has:

n0 < n� k

t  d log n
⇣�

n
� 2
⌘

f =
�

k

log 4n1/2+�� + 1

log n

To ensure f is a constant, we set t = c log n for some constant c and that k = n/g

for some constant g > 1. Finally we assume that � is the minimum value such that

t  d log n(�/n � 2) (that is, there are only as many dimensions as necessary for

decoding using Lemma 6.1.6):

n0 < n� k

� =
(c/d + 2)n log n

log n
= (

c

d
+ 2)n

f =
�

k

log 4n1/2+�� + 1

log n
=

g(c + 2d)

d

log(4(c+2d)

d
n3/2+� + 1)

log n
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Note that f is at a constant in n. Assuming n � k = n(1 � 1/g) > n0 and letting

t = c log n we get the following setting:

� = (
c

d
+ 2)n

q = nf = n
�
k

log(4n1/2+��+1)

log n = poly(n)

⇢q = 2n1/2+�� = 2(
c

d
+ 2)n3/2+�

Note, that f > �

k
�

�

n
�

(c/d+2)n

n
� 3 as long as d < c (this also ensures that

� � 3n, as required for Lemma 6.1.6 to hold). Since ⇢q = 2n1/2+⇢� = O(n5/2) in our

setting ⇢ = O(n�1/2). Thus, for large enough settings of parameters ⇢ is less than

1/10 as required by Lemma 6.1.3.

Furthermore, we get decoding using O(n4d+3) Fq operations. We can output a k

fraction of X and the bits will be pseudorandom (conditioned on A,AX + W ). The

parameter g allows is a tradeo↵ between the number of dimensions needed for security

and the size of the field q. In Theorem 6.1.8, we set g = 2 and output the first half

of X. Setting 1 < g < 2 achieves an increase in output length (over the input length

of W ). We also (arbitrarily) set � = 1/2 to simplify the statement of Theorem 6.1.8,

making ⇢q = 2(c/d + 2)n2.

6.4.1 Parameter Settings for Theorem 6.2.3

We repeat parameter settings for block fixing sources. We now have � + ↵ as the

number of samples, while n + ↵ + !(1) is the number of variables. We can support

any setting where t, n, q, ⇢, �, k, ↵ satisfy the following constraints (for � = !(1) and
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constants d, f):

n0 < n� k � ↵� �

t  d log n
⇣�

n
� 2
⌘

q = nf

⇢q = 2n1/2+��

� log(2⇢q + 1) = k log q

Substituting q = nf and ⇢q = 2n1/2+�� yields the following system of equations:

n0 < n� k � ↵� �

t  d log n
⇣�

n
� 2
⌘

� log(4n1/2+�� + 1) = k log nf

As before we can support any setting any n, t, �,↵ that satisfy these equations for

� = !(1) and constants d, f . However, the last equation may have no solution for f

constant. Putting the last equation in terms of f one has:

n0 < n� k � ↵� �

t  d log n
⇣�

n
� 2
⌘

f =
�

k

log(4n1/2+�� + 1)

log n

To ensure f is a constant, we set t = c log n for some constant c and that k,↵ = n/3

and � = log n. Finally we assume that � is the minimum value such that t 

d log n(�/n�2) (that is, there are only as many dimensions as necessary for decoding
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using Lemma 6.1.6):

n0 < n/3� log n

� =
(c/d + 2)n log n

log n
= (

c

d
+ 2)n

f =
�

k

log(4n1/2+�� + 1)

log n
=
⇣
3(

c

d
+ 2)

⌘ log(4( c

d
+ 2)n3/2+� + 1)

log n
= O(1)

Assuming n/3� log(n) > n0 and letting t = c log n we get the following setting:

� = (
c

d
+ 2)n

q = nf = n
�
n

log(4n1/2+��+1)

log n = poly(n)

⇢q = 2n1/2+�� = 2(
c

d
+ 2)n3/2+�

As before we arbitrarily set � = 1/2, giving ⇢q = 2( c

d
+ 2)n2. Also, if c < d then

we get e�cient decoding and ⇢ = o(1) satisfying the condition of Lemma 6.1.3.
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Chapter 7

Computational Fuzzy Extractors from Point Obfuscation

In Chapter 6, we showed it was possible to construct a computational fuzzy extractor

whose output key length was as long as the starting entropy. In this chapter, we show

practical constructions of computational fuzzy extractors with additional properties.

Both constructions are based on point obfuscation and can support more errors than

entropy. In this section, we do not concentrate on the length of key as computational

techniques we use can expand the key. We instead focus on supporting a wide classes

of sources.

7.1 A reusable computational fuzzy extractor

In Construction 5.2.2, we showed a fuzzy extractor for a family of distributions with

more errors than entropy. Using computational techniques we are able to retain many

of the advantages of Construction 5.2.2 and achieve a reusable fuzzy extractor.

The construction samples a random subset of blocks Wj1
, ...,Wj⌘ and obfuscates

the concatenation of these blocks. Denote this concatenated value by V1. This process

is repeated to produce V1, ..., V` where at least one Vi should be correct to “unlock”

the correct key. Let Sample
�,⌘

(·) be an algorithm that outputs a random subset of

{1, ..., �} of size ⌘ given let rsam bits of randomness.

Construction 7.1.1 (Sample-then-Obfuscate). Let Z be an alphabet, and let W =

W1, ...,W� be a source where each Wj is over Z. Let ⌘ be a parameter, and O be an

obfuscator for the family of digital lockers with -bit outputs. Define Gen, Rep as:
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Gen

1. Input: w = w1, ..., w�

2. Sample key
$
 {0, 1}.

3. For i = 1, ..., `:

(i) Select �i

$
 {0, 1}rsam.

(ii) Set ji,1, ..., ji,⌘  Sample
�,⌘

(�i)

(iii) Set vi = wji,1 , ..., wji,⌘ .

(iv) Set ⇢i = O(Ivi,r).

(v) Set pi = ⇢i, �i.

4. Output (key, p), where p = p1 . . . p`.

Rep

1. Input: (w0 = w0
1
, ..., w0

�
, p)

2. For i = 1, ..., `:

(i) Parse pi as ⇢i, �i.

(ii) ji,1, ..., ji,⌘  Sample
�,⌘

(�i).

(iii) Set v0
i
= w0

ji,1
, ..., w0

ji,⌘
.

(iv) Set ⇢i(v0i) = ri.

If key
i
6=? output key

i
.

3. Output ?.

The use of a computational primitive (obfuscation of digital lockers) allows us to

sample multiple times, because we need to argue only about individual entropy of Vi,

as opposed to the information-theoretic setting, where it would be necessary to argue

about the entropy of the joint variable V . This is the property that allows reusability.

This construction uses a näıve sampler that takes truly random samples, but

the public randomness may be substantially decreased by using more sophisticated

samplers. (See Goldreich [Gol97] for an introduction to samplers.)

Theorem 7.1.2. Let Z be an alphabet. Let n be a security parameter. Let W be the

family of (↵ = ⌦(1), �  �(1�⇥(1)))-partial block sources over Z� where � = ⌦(n).

Let ⌘ be such that ⌘ = !(log n) and ⌘ = o(�), and let c > 1 be a constant and ` be

such that ` = nc. Let O be an `-composable VGB obfuscator for digital lockers (with

 bit outputs) with auxiliary inputs. Then for every ssec = poly(n) there exists

some ✏sec = ngl(n) such that Construction 7.1.1 is a (Z�,W , , t)-computational

fuzzy extractor that is (✏sec, ssec)-hard with error � for

t  �
(c� 1)

2

(� � ⌘) log n

⌘
= o(�)

� = e�n
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7.1.1 Security of Construction 7.1.1

In this section we show security of Construction 7.1.1. With overwhelming proba-

bility, at each of the ` iterations, the sampler will choose enough coordinates of W

that have high entropy, making Vi have su�cient entropy. Once each of the V1, ..., V`

have high entropy the obfuscations are unlikely to return a value other than ? to an

adversary. We begin by showing that each Vi is statistically close to a high entropy

distribution. Let ⇤ represent the random variable of all the coins used by Sample and

� = �1 . . . �` be some particular outcome.

Lemma 7.1.3. Let all variables be as in Theorem 7.1.2. There exists ✏sam = O(e�⌘) =

ngl(n) and ↵0 = ↵⌘(� � � � ⌘)/� = !(log n) such that for each i,

Pr
� ⇤

[H1(Vi|⇤ = �) � ↵0] � 1� ✏sam.

Proof. Consider some fixed i. Recall that there a set J of size ��� = ⇥(�) such that

each w and block j 2 J , H1(Wj|W1 = w1, ...,Wj�1 = wj�1, Wj+1 = wj+1, ...,W� =

w�) � ↵. Since this is a worst case guarantee, the entropy of Vi can be deduced

from the number of symbols in Vi that come from J . Namely, Denote by X =

|{ji,1, ..., ji,⌘} \ J |.

Claim 7.1.4.

H1(Vi|⇤ = �) � ↵X.

Proof. Denote by j1, ..., j⌘ the indices selected by the randomness �i. We begin by

noting that

H1(Vi|⇤ = �) = � log max
v2Vi

Pr[Vi = v|⇤ = �]

= � log max
wj1 ,...,wj⌘

Pr[Wj1
= wj1

^ · · · ^Wj⌘wj⌘ ].
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Then

max
wj1 ,...,wj⌘

Pr[Wj1
= wj1

^ · · · ^Wj⌘ = wj⌘ ]

= max
wj1 ,...,wj⌘

⌘Y

k=1

Pr[Wjk
= wjk

|Wjk�1
= wjk�1

^ ... ^Wj1
= wj1

]



⌘Y

k=1

max
wj1 ,...,wj⌘

Pr[Wjk
= wjk

|Wjk�1
= wjk�1

^ ... ^Wj1
= wj1

]



⌘Y

k=1

max
w1,...,w�

Pr[Wjk
= wjk

|W1 = w1 ^ ... ^Wjk�1 = wjk�1]

Taking the negative logarithm of both sides we have that

H1(Vi|⇤ = �) �
⌘X

k=1

min
w1,...,w�

H1(Wjk
|W1 = w1 ^ ... ^Wjk�1 = wjk�1)

�

X

jk2J

↵ = ↵X

This completes the proof of Claim 7.1.4.

We note that X is distributed according to the hypergeometric distribution, and that

E[X] = ⌘(���)/�. Using the tail bounds from [Chv79, Ska13], we can conclude that

Pr[X  E[X]/2]  e�2((���)/2�)
2
⌘ = O(e�⌘). Thus, setting ↵0 = ↵⌘(���)

2�
and applying

Claim 7.1.4, we conclude that

Pr[H1(Vi) � ↵0] � 1�O(e�⌘).

This completes the proof of Lemma 7.1.3.

We can then argue that all Vi simultaneously have individual entropy with good

probability (by union bound):

Corollary 7.1.5. Let ✏sam and ↵0 be as in Lemma 7.1.3, and all the other variables

be as in Theorem 7.1.2. Then Pr� ⇤[8i, H1(Vi|⇤ = �) � ↵0] � 1� `✏sam.

Once all Vi all simultaneously have good entropy, the adversary only sees ? as
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an output from the obfuscations (with overwhelming probability). If the adversary

only sees ? from the obfuscations, they have no information about key. This is each

output V1, ..., V` is hard to guess. We call this type of distribution block unguessable

source:1

Definition 7.1.6. Let Iv(·, ·) be an oracle that returns

Iv(j, v
0

j
) =

8
<

:
1 vj = v0

j

0 otherwise.

A source V = V1|...|V� is a (q, ↵, �)-unguessable block source if there exists a set

J ⇢ {1, ..., �} of size at least � � � such that for any unbounded adversary S with

oracle access to Iv making at most q queries

8j 2 J, H̃1(Vj|V iew(SIV (·,·))) � ↵.

This is made formal in the following corollary:

Corollary 7.1.7. Let ✏sam, ↵0 be as in Lemma 7.1.3, and all the other variables be as

in Theorem 7.1.2. Take any q = poly(n). For ↵00 = ↵0 � 1 � log(q + 1) = !(log n),

with probability 1 � `✏sam over the choice of ⇤ = �, the distribution V |⇤ = � is a

(q, ↵00, 0)-unguessable block source.

Finally, we can show the construction is secure if the inputs form a unguessable

block source.

Lemma 7.1.8. Let all the variables be as in Theorem 7.1.2. For every ssec = poly(n)

there exists ✏sec = ngl(n) such that �Dssec ((Key, P ), (U, P )) < ✏sec.

Proof. Let O be a `-composable VGB obfuscator with auxiliary input for digital

lockers over Z2 . Let V be a (q, ↵00 = !(log n), 0)-unguessable block source. Our

goal is to show that for all ssec = poly(n) there exists ✏sec = ngl(n) such that

�Dssec ((R, P ), (U, P ))  ✏sec.

1In this definition we allow there to be a set of weak blocks. Construction 7.2.3 is secure for
sources that satisfy this weaker definition.

2In this proof we only consider the case where the sampling has produced a block unguessable
source. The negligible portion of the time when this does not happen in included in the security of
Theorem 7.1.2
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Suppose not, that is suppose there is some ssec = poly(n) such that exists ✏sec =

poly(n) and �Dssec ((Key, P ), (U, P )) > ✏sec. Let D be such a distinguisher of size at

most ssec. That is,

|E[D(Key, P )]� E[D(U, P )] > ✏sec = 1/poly(n).

Define the oracle Iv1,...,v`,r
(·, ·) as follows:

Iv1,...,v`,key(x, i) =

8
<

:
key vi = x

? otherwise.

By the security of obfuscation (Definition 2.4.1), there exists a unbounded time sim-

ulator S (making at most q queries) such that

|E[D(Key, P1, ..., P`)]� E[SIv1,...,v`,r(·,·)(Key, 1` log |Z|)]|  ✏sec/3. (7.1)

We now prove S cannot distinguish between Key and U .

Lemma 7.1.9. SD(SIv1,...,v`,r(·,·)(Key, 1` log |Z|), SIv1,...,v`,r(·,·)(U, 1` log |Z|))  `2�↵
00
.

Proof. It su�ces to show that for any two values in {0, 1}, the statistical distance is

at most `2�↵
00
.

Lemma 7.1.10. Let key be true value encoded in I and let u 2 {0, 1}. Then,

SD(SIv1,...,v`,key(·,·)(key, 1` log |Z|), SIv1,...,v`,r(·,·)(u, 1` log |Z|))  `2�↵
00
.

Proof. Recall that for all j, H̃1(Vj|V iew(S)) � ↵00. The only information about the

correct value of r is contained in the query responses. When all responses are ? the

view of S is identical when presented with key or u. We now show that for any value

of key all queries return ? with probability 1 � 2�↵
00
. Suppose not, that is suppose,

the probability of at least one nonzero response is > 2�(↵
00
).

When there is a response other than ? for some j this means that there is no

remaining min-entropy in Vj. If this occurs with over 2�↵
00

probability this violates the

block unguessability of V (Definition 7.1.6). By the union bound over the indices j the

total probability of a response other than ? is at most `2�↵
00
. Thus, for all key, u the

statistical distance is at most `2�↵
00
. This concludes the proof of Lemma 7.1.10.
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By averaging over all points in {0, 1} we conclude that

SD(SIv1,...,v`,rX(·,·)(Key, 1` log |Z|), SIv1,...,v`,r(·,·)(U, 1` log |Z|)) < `2�↵
00
.

This completes the proof of Lemma 7.1.9.

Now by the security of obfuscation we have that

|E[D(Key, P1, ..., P`)]� E[SIv1,...,v`,r(·,·)(Key, 1` log |Z|)]|  ✏sec/3. (7.2)

Combining Equations 7.1 and 7.2 and Lemma 7.1.9, we have

�D((Key, P ), (U, P ))  |E[D(Key, P1, ..., P`)]� E[SIv1,...,v`,r(·,·)(Key, 1` log |Z|)]|

+ |E[SIv1,...,v`,r(·,·)(Key, 1` log |Z|)]� E[SIv1,...,v`,r(·,·)(U, 1` log |Z|)]|

+ |E[SIv1,...,v`,r(·,·)(U, 1` log |Z|)]� E[D(U, P1, ..., P`)]|

 ✏sec/3 + `2�↵
00

+ ✏sec/3

 2✏sec/3 + ngl(n) < ✏sec.

This is a contradiction and completes the proof of Lemma 7.1.8.

7.1.2 Correctness of Construction 7.1.1

We encode the entire key in each obfuscation. For correctness, at least one of the

repeated readings must be correct with overwhelming probability. Let Vi represent one

of the initial readings and V 0
i

represent a repeated reading. For showing correctness

we must show that Pr[8i, Vi 6= V 0
i
] < ngl(n).

Lemma 7.1.11. Let all the variables be as in Theorem 7.1.2. Then Pr[8i, vi 6= v0
i
] <

ngl(n), where the probability is over the coins of Gen.

Proof. Recall that dis(w, w0)  t and that the locations of the errors is independent of

the selected locations. Denote by µ = � (c�1) log n

2
. Since ⌘ = !(log n), we will assume
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⌘ � 2µ. We begin by computing the probability that a single vi = v0
i
.

Pr[vi = v0
i
] = Pr[w and w0 agree on positions ji,1, ..., ji,⌘]

�

⌘�1Y

j=0

✓
1�

t

� � j

◆
�

⌘�1Y

j=0

✓
1�

µ(� � ⌘)/⌘

⌘ � j

◆

�

⌘�1Y

j=0

✓
1�

µ

⌘

✓
� � ⌘

� � j

◆◆
�

⌘�1Y

j=0

✓
1�

µ

⌘

◆

=

✓
1�

µ

⌘

◆⌘

=

 ✓
1�

µ

⌘

◆⌘/µ
!µ

�

✓
1

2

◆2µ

�

✓
1

2

◆(c�1) log n

=
1

nc�1
.

We then have the probability that all vi 6= v0
i
as:

Pr[8i, vi 6= v0
i
] = (1� Pr[vi = v0

i
])`

=

✓
1�

1

nc�1

◆`

=

 ✓
1�

1

nc�1

◆n
c�1
!`/n

c�1



✓
1

e

◆n
c
/n

c�1

=
1

en
.

This completes the proof of Lemma 7.1.11.

7.1.3 Reusability of Construction 7.1.1

The reusability of Construction 7.1.1 follows from the security of the VGB obfuscator

with auxiliary input. We consider a bounded q = poly(n) number of reuses. For

some fixed i 2 {1, ..., q} we will treat the remaining keys as auxiliary input to the

adversary, and the simulator still performs comparably to a distinguisher with access

to the obfuscations. Thus, given su�ciently strong reusability we achieve the following

result:

Theorem 7.1.12. Let q = poly(n), and let all the variables be as in Theorem 7.1.2,

except that O be an ` ⇥ q-composable VGB obfuscator for digital lockers (with  bit

outputs) with auxiliary inputs. For any admissible f2, ..., fq, for all ssec = poly(n)



108

there exists some ✏sec = ngl(n) such that (Gen, Rep) is (q, ✏sec, ssec, f2, ..., fq)-reusable

fuzzy extractor.

Proof. The only modification to the proof is in Lemma 7.1.8 with the other keys

Key
1
, ..., Key

i�1
, Key

i+1
, ..., Key

q
treated as additional auxiliary input to the adver-

sary/simulator. The simulator in the definition of composable obfuscation is required

to function for arbitrary circuits in the family even if the choice of these circuits de-

pends on the previous obfuscations. Thus allows reading wi to be chosen depending

on public values p1, ..., pi�1.

More errors than entropy? We now show Construction 7.1.1 supports partial

block sources with more errors than entropy. The structure of the partial block

source implies that H1(W ) � ↵(� � �) = ⇥(�). We assume that H1(W ) = ⇥(�).

We are able to correct o(�) errors. This yields:

# Errors� Entropy = log |Bt|� H1(W ) � t log |Z|�⇥(�) = o(�) log |Z|�⇥(�)

That is, there exists a super-constant alphabet size for which Construction 7.1.1 is

secure with more errors than entropy.

Notes: Construction 7.1.1 works for an arbitrary size alphabet; however, for a

constant size alphabet, the required entropy is greater than the number of corrected

error patterns. However, Construction 7.1.1 is reusability for an arbitrary size alpha-

bet.

In the analysis of Construction 7.1.1 we restricted our attention to partial block

sources, to allow for an easy comparison with Construction 5.2.2. However, in fact

Construction 7.1.1 is secure for any source where sampling produces a high entropy

string (entropy !(log n)) with overwhelming probability. For example, it is secure for

sources with symbols that are !(log n)/ log |Z|-wise independent.
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7.2 Allowing Correlated Symbols

In the previous section, we presented a reusable computational fuzzy extractor that

supported sources with more errors than entropy. Unfortunately, both Construc-

tions 5.2.2 and 7.1.1 required each symbol to contribute “fresh” entropy. In this

section, we present a computational construction that allows for correlation between

symbols while still supporting more errors than entropy and correcting a constant

fraction of errors. This construction is inspired by the construction of digital lockers

from point obfuscation by Canetti and Dakdouk [CD08]. Instead of having large parts

of the string w unlock key, we have individual symbols unlock bits of the output. The

construction that follows is a computational fuzzy conductor (Definition 3.3.7) not a

computational fuzzy extractor (Definition 3.3.6, so we call its output c to distinguish

from key.

Before presenting the construction we provide some definitions from error cor-

recting codes. We use error-correct codes over {0, 1}� which correct up to t bit

flips from 0 to 1 but no bit flips from 1 to 0 (this is the Hamming analog of the

Z-channel [TABB02]).3

Definition 7.2.1. Let e, c 2 {0, 1}� be vectors. Let x = Err(c, e) be defined as follows

xi =

8
<

:
1 ci = 1 _ ei = 1

0 otherwise.

Definition 7.2.2. A set C (over {0, 1}�) is a (t, �code)-Z code if there exists an e�-

3Any code that corrects t Hamming errors also corrects t 0 ! 1 errors, but more e�cient codes
exist for this type of error [TABB02]. Codes with 2⇥(�) codewords and t = ⇥(�) over the binary al-
phabet exist for Hamming errors and su�ce for our purposes (first constructed by Justensen [Jus72]).
These codes also yield a constant error tolerance for 0 ! 1 bit flips. The class of errors we sup-
port in our source (t Hamming errors over a large alphabet) and the class of errors for which we
need codes (t 0 ! 1 errors) are di↵erent. Use of a code that corrects t Hamming errors gives the
construction perfect correctness.
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cient procedure Decode such that

8e 2 {0, 1}�
|Wgt(e)  t, Pr

c2C

[Decode(Err(c, e)) 6= c]  �code.

Construction 7.2.3. Let Z be an alphabet and let W = W1, ...,W� be a distribution

over Z�. Let O be an obfuscator for point functions with points from Z. Let C ⇢

{0, 1}� be an error-correcting code. We describe Gen, Rep as follows:

Gen

1. Input: w = w1, ..., w�

2. Sample c C.

3. For j = 1, ..., �:

(i) If cj = 0: pj = O(Iwj).

(ii) Else: rj

$
 Z.

Let pj = O(Irj).

4. Output (c, p), where p = p1 . . . p�.

Rep

1. Input: (w0, p)

2. For j = 1, ..., �:

(i) If pj(w0j) = 1: set c0
j
= 0.

(ii) Else: set c0
j
= 1.

3. Set c = Decode(c0).

4. Output c.

Construction 7.2.3 is secure if no distinguisher can tell whether it is working with

random obfuscations or obfuscations of Wj. By the security of point obfuscation,

anything learnable from the obfuscation is learnable from oracle access to the function.

Therefore, our construction is secure as long as enough blocks are unpredictable even

after adaptive queries to equality oracles for individual symbols. Definition 7.1.6

formalizes this intuition.

We show some examples of unguessable block sources in Appendix B. In particu-

lar, any source W where for all j, H1(Wj) � !(log n) (but all blocks may arbitrarily

correlated) is an unguessable block source (Claim B.1.3).

Construction 7.2.3 is not a computational fuzzy extractor. The codewords c are

not uniformly distributed and it is possible to learn some bits of c (for the symbols

of W without much entropy). However, Construction 7.2.3 a computational fuzzy
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conductor (Definition 3.3.7). Computational fuzzy conductors can be converted to

computational fuzzy extractors using standard techniques (Lemma 3.3.8).

Theorem 7.2.4. Let n be a security parameter. Let Z be an alphabet where |Z| �

2!(log(n)). Let W be a family of (q, ↵ = !(log n), �)-unguessable block sources over Z�,

for any q = poly(n). Furthermore, let C be a (Neigh
t
, �code)-code over Z�. Let O be

an �-composable VGB obfuscator for point functions with auxiliary inputs. Then for

any ssec = poly(n) there exists some ✏sec = ngl(n) such that Construction 7.2.3 is a

(Z�,W , m̃ = H0(C)��, t)-computational fuzzy conductor that is (✏sec, ssec)-hard with

error �code + �/|Z|.

7.2.1 Security of Construction 7.2.3

Security of Construction 7.2.3 is similar to the security of Construction 7.1.1. How-

ever, security is more complicated, the main di�culty is that the definition of block

unguessable sources (Definition 7.1.6) allows for weak blocks that can easily be guessed.

This means we must limit our indistinguishable distribution to blocks that are di�cult

to guess. Security is proved via the following lemma:

Lemma 7.2.5. Let all variables be as in Theorem 7.2.4. For every ssec = poly(n)

there exists some ✏sec = ngl(n) such that HHILL

✏sec,ssec
(C|P ) � H0(C)� �.

We give a brief outline of the proof, followed by the proof. It is su�cient to show

that there exists a distribution C 0 with conditional min-entropy and

�Dssec ((C, P ), (C 0, P ))  ngl(n).

Let J be the set of indices that exists according to Definition 7.1.6. Define the

distribution C 0 as a uniform codeword conditioned on the values of C and C 0 being

equal on all indices outside of J . We first note that C 0 has su�cient entropy, because

H̃1(C 0|P ) = H̃1(C 0|CJc) � H1(C 0, CJc)�H0(CJc) = H0(C)� |J c
| (the second step

is by [DORS08, Lemma 2.2b]). It is left to show �Dssec ((C, P ), (C 0, P ))  ngl(n).

The outline for the rest of the proof is as follows:
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• Let D be a distinguisher between (C, P ) and (C 0, P ). Since P is a collection of

obfuscated programs, there exists a simulator S (outputting a single bit), such

that Pr[D(C, P ) = 1] is close to Pr[SO(C) = 1].

• Show that even an unbounded S making a polynomial number of queries to the

stored points cannot distinguish between C and C 0. That is, SD(SO(C), SO(C 0))

is small.

• By the security of obfuscation, Pr[SO(C 0) = 1] is close to Pr[D(C 0, P ) = 1].

Proof of Lemma 7.2.5. Let O be a �-composable VGB obfuscator with auxiliary in-

put for point programs over Z. Let W be a (q, ↵ = !(log n), �)-unguessable block

source. Our goal is to show that for all ssec = poly(n) there exists ✏sec = ngl(n)

such that HHILL

✏sec,ssec
(C|P ) � H0(C) � �. Suppose not, that is suppose there is some

ssec = poly(n) such that exists ✏sec = poly(n) and HHILL

✏sec,ssec
(C|P ) < H0(C) � �.

By Definition 7.1.6 there exists a set of indices J such that all blocks within J are

unguessable. Define by C 0 the distribution of sampling a uniform codeword where all

locations outside J are fixed. Then H̃1(C 0|CJc) � H1(C 0, CJc)�H0(CJc) = H0(C)��

(by [DORS08, Lemma 2.2b]).

Let D a distinguisher of size at most ssec such that

|E[D(C, P )]� E[D(C 0, P )] > ✏sec = 1/poly(n).

Define the distribution X as follows:

Xj =

8
<

:
Wj Cj = 0

Rj Cj = 1.

By the security of obfuscation (Definition 2.4.1), there exists a unbounded time sim-

ulator S (making at most q queries) such that

|E[D(P1, ..., P�, C)]� E[SIX(·,·)(C, 1� log |Z|)]|  ✏sec/3. (7.3)

We now prove S cannot distinguish between C and C 0.

Lemma 7.2.6. SD(SIX(·,·)(C, 1� log |Z|), SIX(·,·)(C 0, 1� log |Z|))  (� � �)2�(↵+1).
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Proof. It su�ces to show that for any two codewords that agree on J c, the statistical

distance is at most (� � �)2�(↵+1).

Lemma 7.2.7. Let c⇤ be true value encoded in X and let c0 a codeword in C 0. Then,

SD(SIX(·,·)(c⇤, 1� log |Z|), SIX(·,·)(c0, 1� log |Z|))  (� � �)2�(↵+1).

Proof. Recall that for all j 2 J , H̃1(Wj|V iew(S)) � ↵. The only information about

the correct value of c⇤
j

is contained in the query responses. When all responses are 0

the view of S is identical when presented with c⇤ or c0. We now show that for any

value of c⇤ all queries on j 2 J return 0 with probability 1�2�↵+1. Suppose not, that

is suppose, the probability of at least one nonzero response on index j is > 2�(↵+1).

Since w, w0 are independent of rj, the probability of this happening when c⇤
j

= 1 is at

most q/Z or equivalently 2� log |Z|+log q. Thus, it must occur with probability:

2�↵+1 < Pr[non zero response location j]

= Pr[c⇤
j

= 1] Pr[non zero response location j ^ c⇤
j

= 1]

+ Pr[c⇤
j

= 0] Pr[non zero response location j ^ c⇤
j

= 0]

 1⇥ 2� log |Z|+log q + 1⇥ Pr[non zero response location j ^ c⇤
j

= 0] (7.4)

We now show that for an unguessable block source the remaining entropy ↵ 

log |Z|� log q:

Claim 7.2.8. If W is a (q, ↵, �)-block unguessable source over Z then ↵  log |Z|�

log q.

Proof. Let W be a (q, ↵, �)-block unguessable source. Let J ⇢ {1, ..., �} the set of

good indices. It su�ces to show that there exists an S making q queries such that for

some j 2 J, H̃1(Wj|SIW (·,·))  log |Z| � log q. Let j 2 J be some arbitrary element

of J and denote by wj,1, ..., wj,q the q most likely outcomes of Wj (breaking ties

arbitrarily). Then
P

q

i=1
Pr[Wj = wj,i] � q/|Z|. Suppose not, this means that there

is some wj,i with probability Pr[Wj = wj,i] < 1/|Z|. Since there are Z � q remaining

possible values of Wj for their total probability to be at least 1 � q/|Z| at least of

these values has probability at least 1/Z. This contradicts the statement wj,1, ..., wj,q

are the most likely values. Consider S that queries its oracle on (j, wj,1), .., (j, wj,q).

Denote by Bd the random variable when Wj 2 {wj,1, .., wj,q} After these queries the
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remaining min-entropy is at most:

H̃1(Wj|S
JW (·,·)) = � log

⇣
Pr[Bd = 1]⇥ 1 + Pr[Bd = 0]⇥max

w

Pr[Wj = w|Bd = 0]
⌘

 � log (Pr[Bd = 1]⇥ 1)

= � log

✓
q

|Z|

◆
= log |Z|� log q

This completes the proof of Claim 7.2.8.

Rearranging terms in Equation 7.4, we have:

Pr[non zero response location j ^ cj = 0] > 2�↵+1
� 2�(log |Z|�log q) = 2�↵

When there is a 1 response and cj = 0 this means that there is no remaining min-

entropy. If this occurs with over 2�↵ probability this violates the block unguessability

of W (Definition 7.1.6). By the union bound over the indices j 2 J the total prob-

ability of a 1 in J is at most (� � �)2�↵+1. Recall that c⇤, c0 match on all indices

outside of J . Thus, for all c⇤, c0 the statistical distance is at most (� � �)2�↵+1. This

concludes the proof of Lemma 7.2.7.

By averaging over all points in C 0 we conclude that

SD(SIX(·,·)(C, 1� log |Z|), SIX(·,·)(C 0, 1� log |Z|)) < (� � �)2�(↵+1).

This completes the proof of Lemma 7.2.6.

Now by the security of obfuscation we have that

|E[D(P1, ..., P�, C
0)]� E[SIX(·,·)(C 0, 1� log |Z|)]|  ✏sec/3. (7.5)

Combining Equations 7.3 and 7.5 and Lemma 7.2.6, we have

�D((P, C), (P, C 0))  |E[D(P1, ..., P�, C)]� E[SIX(·,·)(C, 1� log |Z|)]|

+ |E[SIX(·,·)(C, 1� log |Z|)]� E[SIX(·,·)(C 0, 1� log |Z|)]|

+ |E[SIX(·,·)(C 0, 1� log |Z|)]� E[D(P1, ..., P�, C
0)]|

 ✏sec/3 + (� � �)2�(↵�1) + ✏sec/3

 2✏sec/3 + ngl(n) < ✏sec.
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This is a contradiction and completes the proof of Lemma 7.2.5.

7.2.2 Correctness of Construction 7.2.3

We now argue correctness of Construction 7.2.3. We begin by showing that the

probability of a single 1! 0 bit flip in c is negligible.

Lemma 7.2.9. Let all variables be as in Theorem 7.2.4. The probability of at least

one 1! 0 bit flip (an obfuscation of a random block being interpreted as the obfusca-

tion of the point) is  �/|Z| = ngl(n).

Proof. Consider a coordinate j for which cj = 1. Since w0 is chosen independently

of the points rj, and rj is uniform, Pr[rj = w0
j
] = 1/|Z|. The lemma follows by the

union bound, since there are at most � such coordinates.

Since there are most t locations for which wj 6= w0
j

there are at most t 0 ! 1

bit flips in c, which the code will correct with probability 1 � �code, because c is

chosen independently of w0. Therefore, Construction 7.2.3 is correct with error at

most �/|Z|.

More errors than entropy? In this section, we show that Construction 7.2.3 can

support distributions with more errors than entropy. We first calculate the size of the

Hamming ball.

log |Bt| = log
tX

i=0

✓
�

i

◆
(|Z|� 1)i > log

✓
�

t

◆
(|Z|� 1)t = ⇥(t log |Z|) + log

✓
�

t

◆

The simplest type of unguessable block source is where each block is independent and

has super-logarithmic entropy (Claim B.1.1). For this type of source the entropy is

H1(W ) = �!(log n). This yields:

# errors� entropy = log |Bt|� H1(W ) >

✓
⇥(t log |Z|) + log

✓
�

t

◆◆
� �!(log n).
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When t = ⇥(�) and the entropy of each block is o(log |Z|), then the construction

supports more errors than entropy. Furthermore, the output entropy is H0(C)�� (if

C is a constant rate code, this is ⇥(�)).

Improvements If most codewords have Hamming weight close to 1/2, we can de-

crease the error tolerance needed from the code from t to about t/2, because roughly

half of the mismatches between w and w0 occur where cj = 1.

If � is not long enough to get a su�ciently long output, the construction can be

run multiple times with the same input and independent randomness.
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Appendix A

A Definitional Equivalence

As described in Section 4.3, our negative results rule out security for an average

member of W . It may be possible to significantly improve parameters by only ruling

out security for a single member W .

Recall the security game of a fuzzy extractor: 1) the challenger specifies (SS, Rec),

2) the adversary specifies a source W 2W 3) The challenger wins if H̃1(W |SS(W )) �

m̃. Instead of just thinking of the uniform distribution over W , consider an arbitrary

distribution V over elements of W . The minimax theorem says we can reverse which

of these actions is announced first [VN28] if A announces V instead of a single element

W . That is, the following two player games have the same equilibrium:

Experiment ExpW
1

(A, C, m̃):

(SS, Rec) C(W)

W  A(W , SS, Rec)

If W 62W , C wins.

If H̃1(W |SS(W )) � m̃, C wins.

Else A wins.

Experiment ExpW
2

(A, C, m̃):

V  A(W)

(SS, Rec) C(V,W)

W  V

If W 62W , C wins.

If H̃1(W |SS(W )) � m̃, C wins.

Else A wins.

This means that showing security for a family of distributions W is equivalent

to showing security for all distributions V when the distribution is known to the

algorithms V . In our negative results, the adversary uses the uniform distribution V

over W . However, it may be possible to improve parameters by using a di↵erent V .

This would just rule out some member of W not an average member. This is true for

fuzzy extractors as well and is resilient to changes in parameters including imperfect

correctness.
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Appendix B

Characterizing unguessable block sources

Definition 7.1.6 is an inherently adaptive definition and a little unwieldy. In this sec-

tion, we partially characterize sources that satisfy Definition 7.1.6. The majority of

the di�culty in characterizing Definition 7.1.6 is that di↵erent blocks may be depen-

dent, so an equality query on block i may reshape the distribution of block j. In the ex-

amples that follow we denote the adversary by S as we consider security against com-

putationally unbounded adversaries defined in VGB obfuscation (Definition 2.4.1).

We first show some sources that are unguessable block sources (Section B.1) and

then show distributions with high overall entropy that are not unguessable block

sources (Section B.2).

B.1 Positive Examples

We begin with the case of independent blocks.

Claim B.1.1. Let W = W1, ...,W� be a source in which all blocks Wj are mutually

independent. Let ↵ be a parameter. Let J ⇢ {1, ..., �} be a set of indices such that

for all j 2 J , H1(Wj) = ↵. Then for any q, W is a (q, ↵ � log(q + 1), � � |J |)-

unguessable block source. In particular, when ↵ = !(log n) and q = poly(n), then W

is a (q, !(log n), � � |J |)-unguessable block source.

Proof. It su�ces to show that for all j 2 J, H̃1(Wj|V iew(SIW (·,·)) = ↵ � log(q + 1).

We can ignore queries for all blocks but the j-th, as the blocks are independent.

Furthermore, without loss of generality, we can assume that no duplicate queries are

asked, and that the adversary is deterministic (S can calculate the best coins). Let

A1, A2, . . . Aq be the random variables representing the oracle answers for an adversary

S making q queries about the ith block. Each Ak is just a bit, and at most one of

them is equal to 1 (because duplicate queries are disallowed). Thus, the total number
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of possible responses is q + 1. Thus, we have the following,

H̃1(Wj|V iew(SOW (·,·)) = H̃1(Wj|A1, . . . , Aq)

= H1(Wj)� |A1, . . . , Aq|

= ↵� log(q + 1) ,

where the second line follows from the first by [DORS08, Lemma 2.2].

Construction 6.1.1 is a computational fuzzy extractor for block fixing sources. Claim

B.1.1 shows that unguessable block distributions are a superset of block fixing sources.

We now consider more complicated distributions where blocks are not independent.

Claim B.1.2. Let f : {0, 1}e
! Z

� be a function. Furthermore, let fj denote

the restriction of f ’s output to its jth coordinate. If for all j, fj is injective then

W = f(Ue) is a (q, e� log(q + 1), 0)-unguessable block source.

Proof. Since f is injective on each block,

H̃1(Wj|V iew(SIW (·,·))) = H̃1(Ue|V iew(SIW (·,·))).

Consider a query qk on block j. There are two possibilities: either qk is not in the

image of fj, or qk can be considered a query on the preimage f�1

j
(qk). Then (by

assuming S knows f) we can eliminate queries which correspond to the same value

of Ue. Then the possible responses are strings with Hamming weight at most 1

(like in the proof of Claim B.1.1), and by [DORS08, Lemma 2.2] we have for all j,

H̃1(Wj|V iew(SIW (·,·))) � H1(Wj)� log(q + 1).

Note the total entropy of a source in Claim B.1.2 is e, so there is a family of

distributions with total entropy !(log n) for which Construction 7.2.3 is secure. For

these distributions, all the coordinates are as dependent as possible: one determines

all others. We can prove a slightly weaker claim when the correlation between the

coordinates Wj is arbitrary:

Claim B.1.3. Let W = W1, ...,W� be a source. Suppose that for all j, H1(Wj) � ↵,

and that q  2↵/4 (this holds asymptotically, in particular, if q is polynomial and ↵

is super-logarithmic). Then W is a (q, ↵� 1� log(q +1), 0)-unguessable block source.
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Proof. Intuitively, the claim is true because the oracle is not likely to return 1 on

any query. Formally, we proceed by induction on oracle queries, using the same

notation as in the proof of Claim B.1.1. Our inductive hypothesis is that Pr[A1 6=

0_ · · ·_Ak�1 6= 0]  (k� 1)21�↵. If the inductive hypothesis holds, then, for each j,

H1(Wj|A1 = · · · = Ak�1 = 0) � ↵� 1 . (B.1)

This is true for k = 1 by the condition of the theorem. It is true for k > 1 because,

as a consequence of the definition of H1, for any random variable X and event E,

H1(X|E) � H1(X) + log Pr[E]; and (k � 1)21�↵
 2q2�↵

 1/2.

We now show that Pr[A1 6= 0 _ · · · _ Ak 6= 0]  k21�↵, assuming that Pr[A1 6=

0 _ · · · _ Ak�1 6= 0]  (k � 1)21�↵.

Pr[A1 6= 0 _ · · · _ Ak�1 6= 0 _ Ak 6= 0]

= Pr[A1 6= 0 _ · · · _ Ak�1 6= 0] + Pr[A1 = · · · = Ak�1 = 0 ^ Ak = 1]

 (k � 1)21�↵ + Pr[Ak = 1 |A1 = · · · = Ak�1 = 0]

 (k � 1)21�↵ + max
j

2�H1(Wj |A1=···=Ak�1=0)

 (k � 1)21�↵ + 21�↵

= k21�↵

(where the third line follows by considering that to get Ak = 1, the adversary needs to

guess some Wj, and the fourth line follows by (B.1)). Thus, using k = q + 1 in (B.1),

we know H1(Wj|A1 = · · · = Aq = 0) � ↵� 1. Finally this means that

H̃1(Wj|A1, . . . , Aq) � � log(2�H1(Wj |A1=···=Aq=0) Pr[A1 = · · · = Aq = 0]

+ 1 · Pr[A1 6= 0 _ · · · _ Aq 6= 0])

� � log
�
2�H1(Wj |A1=···=Aq=0) + q21�↵

�

� � log
�
(q + 1)21�↵

�
= ↵� 1� log(q + 1) .
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B.2 Negative Examples

Claims B.1.2 and B.1.3 rest on there being no easy “entry” point to the distribution.

This is not always the case. Indeed it is possible for some blocks to have very high

entropy but lose all of it after equality queries.

Claim B.2.1. Let p = (poly(n)) and let f1, ..., f� be injective functions where fj :

{0, 1}j⇥log p
! {0, 1}n.1 Then define the distributions

W1 = f1(U1,...,�),

W2 = f2(U1,...,2�)

, ....,

W� = f�(U).

There is an adversary making p⇥ � = poly(n) queries such that

H̃1(W |V iew(SIW (·,·))) = 0.

Proof. Let x be the true value for Up⇥�. We present an adversary S that com-

pletely determines x. S computes y1

1
= f1(x1

1
), ..., yp

1
= f(xp

1
). Then S queries on

(1, y1), ..., (1, yp), exactly one answer returns 1. Let this value be y⇤
1

and its preim-

age x⇤
1
. Then S computes y1

2
= f2(x⇤1, x

1

2
), ..., yp

2
= f2(x⇤1, x

p

2
) and queries y1

2
, ..., yp

2
.

Again, exactly one of these queries returns 1. This process is repeated until all of x

is recovered (and thus w).

The previous example relies on an adversaries ability to determine a block from

the previous blocks. We formalize this notion next. We define the entropy jump of a

block source as the remaining entropy when other blocks are known:

Definition B.2.2. Let W = W1, ...,W� be a source under ordering i1, ..., i�. The

jump of a block ij is Jump(ij) = maxwi1 ,...,wij�1
H0(Wij |Wi1

= wi1
, ...,Wij�1

= wij�1
).

If an adversary can learn blocks in succession they can eventually recover the entire

secret. In order for a source to be block unguessable the adversary must get “stuck”

1Here we assume that n � � ⇥ log p, that is the source has a small number of blocks.
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early enough in their recovery process. This translates to having a super-logarithmic

jump early enough.

Claim B.2.3. Let W be a distribution and let q be a parameter, if there exists an

ordering i1, ..., i� such that for all j  � � � + 1, Jump(ij) = log q/(� � � + 1), then

W is not (q, 0, �)-unguessable block source.

Proof. For convenience relabel the ordering that violates the condition as 1, ..., �.

We describe an unbounded adversary that determines W1, ...,W���+1. As before S

queries the q/� possible values for W1 and determines W1. Then S queries the (at

most) q/(��� +1) possible values for W2|W1. This process is repeated until W���+1

is learned.

Presenting a su�cient condition for security is more di�cult as S may interleave

queries to di↵erent blocks. It seems like the optimum strategy is to focus on a single

block at a time but it is unclear how to formalize this intuition.
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